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Prelude

“Deterministic random walk" on Z generated by an ergodic
dynamical system (X , µ,T ).
E.g. X = R/Z, µ = Lebesgue, T (x) := x +α (mod 1), α ∈ R \Q.
Take f : X → {1,−1} with µ(f ) = 0, e.g. f (x) = 2χE (x)− 1 with
µ(E) = µ(Ec), and set Sn :=

∑n−1
i=0 f (T ix)

50 100 150 200

-5

5

10

15



Prelude
“Deterministic random walk" on Z generated by an ergodic
dynamical system (X , µ,T ).

E.g. X = R/Z, µ = Lebesgue, T (x) := x +α (mod 1), α ∈ R \Q.
Take f : X → {1,−1} with µ(f ) = 0, e.g. f (x) = 2χE (x)− 1 with
µ(E) = µ(Ec), and set Sn :=

∑n−1
i=0 f (T ix)

50 100 150 200

-5

5

10

15



Prelude
“Deterministic random walk" on Z generated by an ergodic
dynamical system (X , µ,T ).
E.g. X = R/Z, µ = Lebesgue, T (x) := x +α (mod 1), α ∈ R \Q.

Take f : X → {1,−1} with µ(f ) = 0, e.g. f (x) = 2χE (x)− 1 with
µ(E) = µ(Ec), and set Sn :=

∑n−1
i=0 f (T ix)

50 100 150 200

-5

5

10

15



Prelude
“Deterministic random walk" on Z generated by an ergodic
dynamical system (X , µ,T ).
E.g. X = R/Z, µ = Lebesgue, T (x) := x +α (mod 1), α ∈ R \Q.
Take f : X → {1,−1} with µ(f ) = 0, e.g. f (x) = 2χE (x)− 1 with
µ(E) = µ(Ec), and set Sn :=

∑n−1
i=0 f (T ix)

50 100 150 200

-5

5

10

15



Prelude
“Deterministic random walk" on Z generated by an ergodic
dynamical system (X , µ,T ).
E.g. X = R/Z, µ = Lebesgue, T (x) := x +α (mod 1), α ∈ R \Q.
Take f : X → {1,−1} with µ(f ) = 0, e.g. f (x) = 2χE (x)− 1 with
µ(E) = µ(Ec), and set Sn :=

∑n−1
i=0 f (T ix)

50 100 150 200

-5

5

10

15



Some mathematical problems

1. By ergodicity Sn = o(n). Actual growth? In several senses:
pointwise, in L∞, in L2. Upper and lower bounds.

I S. I., Dispersion of ergodic translations, Int. J. of Math. and
Matem. Sci., Vol. 2006, Art. ID 20568, 1-20.

I C. Bonanno, S. I., A renormalisation approach to irrational
rotations, Ann. Matem. Pura e Appl. 188 (2009), 247-267.

2. Existence of a subsequence nj ↗∞ s.t. Snj/‖Snj‖2 is
asymptotically normally distributed.

I J.-P. Conze, S. I., S. Le Borgne, Diffusion behaviour of
ergodic sums over rotations, 2016.
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Growth in L∞

For an irrational rotation T (x) := x + α (mod 1) let
[a1,a2,a3, . . . ] be the continued fraction expansion of α and

pk

qk
:= [a1,a2, . . . ,ak ] =

1

a1 +
1

a2 +
1

. . . + 1
ak

be its k -th convergent.

We have the Denjoy-Koksma inequality (for f of bounded
variation with µ(f ) = 0):

‖Sqk (f , α)‖∞ ≤ V (f ) , ∀k ≥ 1

For qk ≤ n < qk+1 one can use the Ostrowski representation:
n =

∑k
i=0 ciqi with 0 ≤ ci ≤ ai+1 to get the upper bound,

‖Sn(f , α)‖∞ ≤ V (f )
k+1∑
i=1

ai
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One thus gets the following behaviours

Theorem

I If ai = O(1) then ‖Sn(f , α)‖∞ = O(log n).
I If α is Diophantine of exponent 2 + τ then

‖Sn(f , α)‖∞ = O
(

n1− 1
1+τ log n

)

I Specific cases.
Example: for α = e − 2 we have a3k−1 = 2k and an = 1
otherwise (so τ = 0), and one finds

‖Sn(f , α)‖∞ = O(log2 n/ log2(log n))
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Growth in L2

For f ∈ L2(X , µ) with µ(f ) = 0 set DSn := ‖Sn(f , α)‖22 ≡ µ(S2
n)

Some basic spectral theory

I ρ(k) := µ(f · f ◦ T k ) =
∫ 1

0 e2πikλσf (dλ), where the measure
σf on (0,1] is the spectral type of f , and

DSn =
n−1∑

k=−n+1

(n − |k |)ρ(k) =

∫ 1

0
Φn(λ)σf (dλ),

with Φn(λ) = Φn(1− λ) := sin2(n πλ)/sin2(πλ).

I 〈DSn〉 := 1
n
∑n−1

k=0 DSk satisfies (finite or infinite)

lim
n→∞
〈DSn〉 =

∫ 1

0
(2 sin2(πλ))−1σf (dλ)
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The α-rotation has eigenvalues λr = e 2πi r α with eigenvectors
er (x) = e 2πi r x , hence

σf (dλ) =
∑
r∈Z
|fr |2δ(λ− {rα}) dλ , fr = (f ,er )

and
DSn =

∑
r∈Z
|fr |2Φn(‖rα‖) (‖x‖ = dist(x ,Z))

Some consequences: for all α ∈ R \Q

I DSn → 0 along the subsequence n = qk , k →∞.

I limn→∞〈DSn〉 =∞.
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Upper bounds for DSn

Let C be the class of functions f ∈ L2(X , µ) with µ(f ) = 0 and
Fourier coefficients

fr =
cr

r
with K (f ) = sup

r 6=0
|cr | <∞

Theorem For f ∈ C and qk ≤ n < qk+1 we have

DSn ≤ C
k∑

i=0

a2
i+1

In particular for α of bounded type we have

max
qk≤n<qk+1

DSn = O(k) = O(log n)
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Lower bounds for 〈DSn〉
The functions Φn(x) and 〈Φn(x)〉 are both or order n2 for
0 ≤ x < 1

2n .

But for 1
2n ≤ x ≤ 1

2 they behave differently:

0.1 0.2 0.3 0.4 0.5

2
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14

Φn(x) and 〈Φn(x)〉 vs x for n = 10
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In particular we get

Theorem For f ∈ C and qk ≤ n < qk+1

〈DSn〉 ≥ C
k−1∑
i=0

a2
i+1|cqi |

2

Example: f (x) = χ[0,β)(x)− β,

fr =
cr

r
=

sin(πrβ)

πr
e−iπrβ, (r 6= 0)

and

qk ≤ n < qk+1 =⇒ 〈DSn〉 ≥ C
k−1∑
i=0

a2
i+1 sin2(πβqi)

If ai = O(1) and β = 1/2 we get a logarithmic lower bound.
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Stronger stochastic properties along subsequences

In view of the above, in searching for a diffusive behavior of the
ergodic sums one has to consider subsequences and to use
the scale given by the qk ’s.

Indeed, it turns out that (using the lower bounds obtained
above) we can use a slight extension of a theorem due to
Berkes and Philipp (Acta Math. Acad. Sci. Hungar. 34 (1979),
no. 1-2, 141-155) giving an approximation of lacunary series of
the form

∑N
k=1 fk (nkx) by a Wiener process (ASIP).
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Theorem

Let f =
∑

r 6=0
cr
r e2πirx ∈ C, and set `N =

∑N
k=1 qnk

where (nk ) is a sequence of integers. If the following conditions
are satisfied:

1)
1√
N

N∑
k=1

1
√ank+1

→ 0 , 2)
N∑

k=1

∑
r 6=0

c2
rqnk

r2 ≥ C N

then the distribution of S`N/
√

DS`N is asymptotically normal.
If, moreover, ank+1 ≥ kγ , with γ > 1, then, keeping its
distribution, the sequence (S`N )N≥1 can be redefined on a
larger probability space together with a Wiener process W (t)
s.t.

S`N = W (τN) + o(N
1
2−λ) a.s.

where λ > 0 is an absolute constant and τN is an increasing
sequence of r.v.’s such that τN/

√
DS`N → 1 a.s.



Theorem Let f =
∑

r 6=0
cr
r e2πirx ∈ C, and set `N =

∑N
k=1 qnk

where (nk ) is a sequence of integers.

If the following conditions
are satisfied:

1)
1√
N

N∑
k=1

1
√ank+1

→ 0 , 2)
N∑

k=1

∑
r 6=0

c2
rqnk

r2 ≥ C N

then the distribution of S`N/
√

DS`N is asymptotically normal.
If, moreover, ank+1 ≥ kγ , with γ > 1, then, keeping its
distribution, the sequence (S`N )N≥1 can be redefined on a
larger probability space together with a Wiener process W (t)
s.t.

S`N = W (τN) + o(N
1
2−λ) a.s.

where λ > 0 is an absolute constant and τN is an increasing
sequence of r.v.’s such that τN/

√
DS`N → 1 a.s.



Theorem Let f =
∑

r 6=0
cr
r e2πirx ∈ C, and set `N =

∑N
k=1 qnk

where (nk ) is a sequence of integers. If the following conditions
are satisfied:

1)
1√
N

N∑
k=1

1
√ank+1

→ 0 ,

2)
N∑

k=1

∑
r 6=0

c2
rqnk

r2 ≥ C N

then the distribution of S`N/
√

DS`N is asymptotically normal.
If, moreover, ank+1 ≥ kγ , with γ > 1, then, keeping its
distribution, the sequence (S`N )N≥1 can be redefined on a
larger probability space together with a Wiener process W (t)
s.t.

S`N = W (τN) + o(N
1
2−λ) a.s.

where λ > 0 is an absolute constant and τN is an increasing
sequence of r.v.’s such that τN/

√
DS`N → 1 a.s.



Theorem Let f =
∑

r 6=0
cr
r e2πirx ∈ C, and set `N =

∑N
k=1 qnk

where (nk ) is a sequence of integers. If the following conditions
are satisfied:

1)
1√
N

N∑
k=1

1
√ank+1

→ 0 , 2)
N∑

k=1

∑
r 6=0

c2
rqnk

r2 ≥ C N

then the distribution of S`N/
√

DS`N is asymptotically normal.
If, moreover, ank+1 ≥ kγ , with γ > 1, then, keeping its
distribution, the sequence (S`N )N≥1 can be redefined on a
larger probability space together with a Wiener process W (t)
s.t.

S`N = W (τN) + o(N
1
2−λ) a.s.

where λ > 0 is an absolute constant and τN is an increasing
sequence of r.v.’s such that τN/

√
DS`N → 1 a.s.



Theorem Let f =
∑

r 6=0
cr
r e2πirx ∈ C, and set `N =

∑N
k=1 qnk

where (nk ) is a sequence of integers. If the following conditions
are satisfied:

1)
1√
N

N∑
k=1

1
√ank+1

→ 0 , 2)
N∑

k=1

∑
r 6=0

c2
rqnk

r2 ≥ C N

then the distribution of S`N/
√

DS`N is asymptotically normal.

If, moreover, ank+1 ≥ kγ , with γ > 1, then, keeping its
distribution, the sequence (S`N )N≥1 can be redefined on a
larger probability space together with a Wiener process W (t)
s.t.

S`N = W (τN) + o(N
1
2−λ) a.s.

where λ > 0 is an absolute constant and τN is an increasing
sequence of r.v.’s such that τN/

√
DS`N → 1 a.s.



Theorem Let f =
∑

r 6=0
cr
r e2πirx ∈ C, and set `N =

∑N
k=1 qnk

where (nk ) is a sequence of integers. If the following conditions
are satisfied:

1)
1√
N

N∑
k=1

1
√ank+1

→ 0 , 2)
N∑

k=1

∑
r 6=0

c2
rqnk

r2 ≥ C N

then the distribution of S`N/
√

DS`N is asymptotically normal.
If, moreover, ank+1 ≥ kγ , with γ > 1, then, keeping its
distribution, the sequence (S`N )N≥1 can be redefined on a
larger probability space together with a Wiener process W (t)
s.t.

S`N = W (τN) + o(N
1
2−λ) a.s.

where λ > 0 is an absolute constant and τN is an increasing
sequence of r.v.’s such that τN/

√
DS`N → 1 a.s.



Application to the rectangular Lorenz gas

Billiard flow in the plane with identical Z2-periodically distributed
rectangular obstacles R(m,n)(a,b) of size a · b with 0 < a,b < 1
and a/b ∈ R \Q.

An orbit of the billiard flow in direction (1, 1) for the rectangular
Lorenz gas.
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Under the geometrical condition of "small obstacles":

pa + qb ≤ 1

one can decompose (the conservative part of) the billiard map
in the (rational) direction (p,q), on the polygonal surface
R2 \ ∪(m,n)∈Z2R(m,n)(a,b), into 2pq isomorphic ergodic
components, where it can be expressed as a skew product over
a rotation, namely a map of the form:

(x , y)→ (x + α, y + ϕ(x))

where α ∈ R \Q and the displacement function ϕ : R/Z→ Z2 is
a suitable step function.

Then apply the above results...



Under the geometrical condition of "small obstacles":

pa + qb ≤ 1

one can decompose (the conservative part of) the billiard map
in the (rational) direction (p,q), on the polygonal surface
R2 \ ∪(m,n)∈Z2R(m,n)(a,b), into 2pq isomorphic ergodic
components, where it can be expressed as a skew product over
a rotation, namely a map of the form:

(x , y)→ (x + α, y + ϕ(x))

where α ∈ R \Q and the displacement function ϕ : R/Z→ Z2 is
a suitable step function.

Then apply the above results...


