Diffusive behaviour of ergodic sums over rotations

Stefano Isola

Università di Camerino

"Deterministic random walk" on \mathbb{Z} generated by an ergodic dynamical system (X, μ, T) .

"Deterministic random walk" on \mathbb{Z} generated by an ergodic dynamical system (X, μ, T) .

E.g. $X = \mathbb{R}/\mathbb{Z}$, $\mu = \text{Lebesgue}$, $T(x) := x + \alpha \pmod{1}$, $\alpha \in \mathbb{R} \setminus \mathbb{Q}$.

"Deterministic random walk" on \mathbb{Z} generated by an ergodic dynamical system (X, μ, T) .

E.g.
$$X = \mathbb{R}/\mathbb{Z}$$
, $\mu = \text{Lebesgue}$, $T(x) := x + \alpha \pmod{1}$, $\alpha \in \mathbb{R} \setminus \mathbb{Q}$. Take $f : X \to \{1, -1\}$ with $\mu(f) = 0$, e.g. $f(x) = 2\chi_E(x) - 1$ with $\mu(E) = \mu(E^c)$, and set $S_n := \sum_{i=0}^{n-1} f(T^i x)$

"Deterministic random walk" on \mathbb{Z} generated by an ergodic dynamical system (X, μ, T) .

E.g. $X = \mathbb{R}/\mathbb{Z}$, $\mu = \text{Lebesgue}$, $T(x) := x + \alpha \pmod{1}$, $\alpha \in \mathbb{R} \setminus \mathbb{Q}$. Take $f: X \to \{1, -1\}$ with $\mu(f) = 0$, e.g. $f(x) = 2\chi_E(x) - 1$ with $\mu(E) = \mu(E^c)$, and set $\frac{S_n}{I} := \sum_{i=0}^{n-1} f(T^i x)$

1. By ergodicity $S_n = o(n)$. Actual growth? In several senses: pointwise, in L_{∞} , in L_2 . Upper and lower bounds.

- 1. By ergodicity $S_n = o(n)$. Actual growth? In several senses: pointwise, in L_{∞} , in L_2 . Upper and lower bounds.
 - S. I., Dispersion of ergodic translations, Int. J. of Math. and Matem. Sci., Vol. 2006, Art. ID 20568, 1-20.
 - C. Bonanno, S. I., A renormalisation approach to irrational rotations, Ann. Matem. Pura e Appl. 188 (2009), 247-267.

- 1. By ergodicity $S_n = o(n)$. Actual growth? In several senses: pointwise, in L_{∞} , in L_2 . Upper and lower bounds.
 - S. I., Dispersion of ergodic translations, Int. J. of Math. and Matem. Sci., Vol. 2006, Art. ID 20568, 1-20.
 - C. Bonanno, S. I., A renormalisation approach to irrational rotations, Ann. Matem. Pura e Appl. 188 (2009), 247-267.
- 2. Existence of a subsequence $n_j \nearrow \infty$ s.t. $S_{n_j}/\|S_{n_j}\|_2$ is asymptotically normally distributed.

- 1. By ergodicity $S_n = o(n)$. Actual growth? In several senses: pointwise, in L_{∞} , in L_2 . Upper and lower bounds.
 - S. I., Dispersion of ergodic translations, Int. J. of Math. and Matem. Sci., Vol. 2006, Art. ID 20568, 1-20.
 - C. Bonanno, S. I., A renormalisation approach to irrational rotations, Ann. Matem. Pura e Appl. 188 (2009), 247-267.
- 2. Existence of a subsequence $n_j \nearrow \infty$ s.t. $S_{n_j}/\|S_{n_j}\|_2$ is asymptotically normally distributed.
 - ▶ J.-P. Conze, S. I., S. Le Borgne, *Diffusion behaviour of ergodic sums over rotations*, 2016.

For an irrational rotation $T(x) := x + \alpha \pmod{1}$ let $[a_1, a_2, a_3, \dots]$ be the continued fraction expansion of α and

$$\frac{p_k}{q_k} := [a_1, a_2, \dots, a_k] = \frac{1}{a_1 + \frac{1}{a_2 + \frac{1}{a_1 \cdot \dots \cdot \frac{1}{a_{1k}}}}}$$

be its *k*-th convergent.

For an irrational rotation $T(x) := x + \alpha \pmod{1}$ let $[a_1, a_2, a_3, \dots]$ be the continued fraction expansion of α and

rational rotation
$$T(x) := x + \alpha \pmod{1}$$
 let a_3, \ldots be the continued fraction expansion of α and $a_k := [a_1, a_2, \ldots, a_k] = \cfrac{1}{a_1 + \cfrac{1}{a_2 + \cfrac{1}{\ddots + \cfrac{1}{a_k}}}}$

be its k-th convergent.

We have the Denjoy-Koksma inequality (for f of bounded variation with $\mu(f) = 0$):

$$\|S_{q_k}(f,\alpha)\|_{\infty} \le V(f)$$
 , $\forall k \ge 1$

For an irrational rotation $T(x) := x + \alpha \pmod{1}$ let $[a_1, a_2, a_3, \dots]$ be the continued fraction expansion of α and

rational rotation
$$T(x) := x + \alpha \pmod{1}$$
 let a_3, \ldots be the continued fraction expansion of $\alpha \in \frac{p_k}{q_k} := [a_1, a_2, \ldots, a_k] = \frac{1}{a_1 + \cfrac{1}{a_2 + \cfrac{1}{\ddots + \cfrac{1}{a_k}}}}$

be its k-th convergent.

We have the Denjoy-Koksma inequality (for f of bounded variation with $\mu(f) = 0$):

$$\|S_{q_k}(f,\alpha)\|_{\infty} \leq V(f)$$
 , $\forall k \geq 1$

For $q_k \le n < q_{k+1}$ one can use the Ostrowski representation: $n = \sum_{i=0}^k c_i q_i$ with $0 \le c_i \le a_{i+1}$ to get the upper bound,

$$\|S_n(f,\alpha)\|_{\infty} \leq V(f)\sum_{i=1}^{k+1}a_i$$

Theorem

Theorem

▶ If $a_i = O(1)$ then $||S_n(f, \alpha)||_{\infty} = O(\log n)$.

Theorem

- ▶ If $a_i = O(1)$ then $||S_n(f, \alpha)||_{\infty} = O(\log n)$.
- ▶ If α is Diophantine of exponent 2 + τ then

$$\|S_n(f,\alpha)\|_{\infty} = O\left(n^{1-\frac{1}{1+\tau}}\log n\right)$$

Theorem

- ▶ If $a_i = O(1)$ then $||S_n(f, \alpha)||_{\infty} = O(\log n)$.
- ▶ If α is Diophantine of exponent 2 + τ then

$$\|S_n(f,\alpha)\|_{\infty} = O\left(n^{1-\frac{1}{1+\tau}}\log n\right)$$

Specific cases.

Theorem

- ▶ If $a_i = O(1)$ then $||S_n(f, \alpha)||_{\infty} = O(\log n)$.
- ▶ If α is Diophantine of exponent 2 + τ then

$$\|S_n(f,\alpha)\|_{\infty} = O\left(n^{1-\frac{1}{1+\tau}}\log n\right)$$

Specific cases.

Example: for $\alpha = e - 2$ we have $a_{3k-1} = 2k$ and $a_n = 1$ otherwise (so $\tau = 0$), and one finds

$$||S_n(f,\alpha)||_{\infty} = O(\log^2 n / \log^2(\log n))$$

For $f \in L_2(X, \mu)$ with $\mu(f) = 0$ set

For $f \in L_2(X, \mu)$ with $\mu(f) = 0$ set $DS_n := ||S_n(f, \alpha)||_2^2 \equiv \mu(S_n^2)$

Growth in L₂

For
$$f \in L_2(X, \mu)$$
 with $\mu(f) = 0$ set $DS_n := ||S_n(f, \alpha)||_2^2 \equiv \mu(S_n^2)$

Some basic spectral theory

For
$$f \in L_2(X, \mu)$$
 with $\mu(f) = 0$ set $DS_n := ||S_n(f, \alpha)||_2^2 \equiv \mu(S_n^2)$

Some basic spectral theory

• $\rho(k) := \mu(f \cdot f \circ T^k) = \int_0^1 e^{2\pi i k \lambda} \sigma_f(d\lambda)$, where the measure σ_f on (0,1] is the *spectral type* of f, and

$$DS_n = \sum_{k=-n+1}^{n-1} (n-|k|)\rho(k) = \int_0^1 \Phi_n(\lambda)\sigma_f(d\lambda),$$

with
$$\Phi_n(\lambda) = \Phi_n(1-\lambda) := \sin^2(n\pi\lambda)/\sin^2(\pi\lambda)$$
.

Growth in L₂

For
$$f \in L_2(X, \mu)$$
 with $\mu(f) = 0$ set $DS_n := ||S_n(f, \alpha)||_2^2 \equiv \mu(S_n^2)$

Some basic spectral theory

• $\rho(k) := \mu(f \cdot f \circ T^k) = \int_0^1 e^{2\pi i k \lambda} \sigma_f(d\lambda)$, where the measure σ_f on (0,1] is the *spectral type* of f, and

$$DS_n = \sum_{k=-n+1}^{n-1} (n-|k|)\rho(k) = \int_0^1 \Phi_n(\lambda)\sigma_f(d\lambda),$$

with
$$\Phi_n(\lambda) = \Phi_n(1-\lambda) := \sin^2(n\pi\lambda)/\sin^2(\pi\lambda)$$
.

• $\langle DS_n \rangle := \frac{1}{n} \sum_{k=0}^{n-1} DS_k$ satisfies (finite or infinite)

$$\lim_{n \to \infty} \langle DS_n \rangle = \int_0^1 (2\sin^2(\pi\lambda))^{-1} \sigma_f(d\lambda)$$

$$\sigma_f(d\lambda) = \sum_{r \in \mathbb{Z}} |f_r|^2 \delta(\lambda - \{r\alpha\}) d\lambda$$
 , $f_r = (f, e_r)$

and

$$DS_n = \sum_{r \in \mathbb{Z}} |f_r|^2 \Phi_n(\|r\alpha\|) \quad (\|x\| = dist(x, \mathbb{Z}))$$

$$\sigma_f(d\lambda) = \sum_{r \in \mathbb{Z}} |f_r|^2 \delta(\lambda - \{r\alpha\}) d\lambda$$
 , $f_r = (f, e_r)$

and

$$DS_n = \sum_{r \in \mathbb{Z}} |f_r|^2 \Phi_n(\|r\alpha\|) \quad (\|x\| = dist(x, \mathbb{Z}))$$

Some consequences:

$$\sigma_f(d\lambda) = \sum_{r \in \mathbb{Z}} |f_r|^2 \delta(\lambda - \{r\alpha\}) d\lambda$$
 , $f_r = (f, e_r)$

and

$$DS_n = \sum_{r \in \mathbb{Z}} |f_r|^2 \Phi_n(\|r\alpha\|) \quad (\|x\| = dist(x, \mathbb{Z}))$$

Some consequences: for all $\alpha \in \mathbb{R} \setminus \mathbb{Q}$

▶ $DS_n \rightarrow 0$ along the subsequence $n = q_k$, $k \rightarrow \infty$.

$$\sigma_f(d\lambda) = \sum_{r \in \mathbb{Z}} |f_r|^2 \delta(\lambda - \{r\alpha\}) d\lambda$$
 , $f_r = (f, e_r)$

and

$$DS_n = \sum_{r \in \mathbb{Z}} |f_r|^2 \Phi_n(\|r\alpha\|) \quad (\|x\| = dist(x, \mathbb{Z}))$$

Some consequences: for all $\alpha \in \mathbb{R} \setminus \mathbb{Q}$

- ▶ $DS_n \rightarrow 0$ along the subsequence $n = q_k$, $k \rightarrow \infty$.
- $\blacktriangleright \quad \lim_{n\to\infty} \langle DS_n \rangle = \infty.$

Upper bounds for DS_n

Let C be the class of functions $f \in L_2(X, \mu)$ with $\mu(f) = 0$ and Fourier coefficients

$$f_r = \frac{c_r}{r}$$
 with $K(f) = \sup_{r \neq 0} |c_r| < \infty$

Theorem For $f \in \mathcal{C}$ and $q_k \leq n < q_{k+1}$ we have

Upper bounds for DS_n

Let C be the class of functions $f \in L_2(X, \mu)$ with $\mu(f) = 0$ and Fourier coefficients

$$f_r = \frac{c_r}{r}$$
 with $K(f) = \sup_{r \neq 0} |c_r| < \infty$

Theorem For $f \in \mathcal{C}$ and $q_k \leq n < q_{k+1}$ we have

$$DS_n \leq C \sum_{i=0}^k a_{i+1}^2$$

In particular for α of bounded type we have

$$\max_{q_k \le n < q_{k+1}} DS_n = O(k) = O(\log n)$$

Lower bounds for $\langle DS_n \rangle$

The functions $\Phi_n(x)$ and $\langle \Phi_n(x) \rangle$ are both or order n^2 for $0 \le x < \frac{1}{2n}$.

Lower bounds for $\langle DS_n \rangle$

The functions $\Phi_n(x)$ and $\langle \Phi_n(x) \rangle$ are both or order n^2 for $0 \le x < \frac{1}{2n}$. But for $\frac{1}{2n} \le x \le \frac{1}{2}$ they behave differently:

Lower bounds for $\langle DS_n \rangle$

The functions $\Phi_n(x)$ and $\langle \Phi_n(x) \rangle$ are both or order n^2 for $0 \le x < \frac{1}{2n}$. But for $\frac{1}{2n} \le x \le \frac{1}{2}$ they behave differently:

Theorem For $f \in \mathcal{C}$ and $q_k \leq n < q_{k+1}$

Theorem For $f \in \mathcal{C}$ and $q_k \leq n < q_{k+1}$

$$\langle \mathcal{DS}_n
angle \geq C \sum_{i=0}^{k-1} a_{i+1}^2 |c_{q_i}|^2$$

Theorem For $f \in \mathcal{C}$ and $q_k \leq n < q_{k+1}$

$$\langle \mathit{DS}_n
angle \geq C \, \sum_{i=0}^{k-1} a_{i+1}^2 |c_{q_i}|^2$$

Example:

Theorem For $f \in \mathcal{C}$ and $q_k \leq n < q_{k+1}$

$$\langle \mathit{DS}_n
angle \geq C \sum_{i=0}^{k-1} a_{i+1}^2 |c_{q_i}|^2$$

Example: $f(x) = \chi_{[0,\beta)}(x) - \beta$,

Theorem For $f \in \mathcal{C}$ and $q_k \leq n < q_{k+1}$

$$\langle \mathit{DS}_{\mathit{n}} \rangle \geq \mathit{C} \, \sum_{i=0}^{k-1} \mathit{a}_{i+1}^2 |\mathit{c}_{\mathit{q}_i}|^2$$

Example:
$$f(x) = \chi_{[0,\beta)}(x) - \beta$$
,

$$f_r = \frac{c_r}{r} = \frac{\sin(\pi r \beta)}{\pi r} e^{-i\pi r \beta}, \quad (r \neq 0)$$

and

Theorem For $f \in \mathcal{C}$ and $q_k \leq n < q_{k+1}$

$$\langle \mathit{DS}_n
angle \geq C \, \sum_{i=0}^{k-1} a_{i+1}^2 |c_{q_i}|^2$$

Example:
$$f(x) = \chi_{[0,\beta)}(x) - \beta$$
,

$$f_r = \frac{c_r}{r} = \frac{\sin(\pi r \beta)}{\pi r} e^{-i\pi r \beta}, \quad (r \neq 0)$$

and

$$q_k \leq n < q_{k+1} \Longrightarrow \langle \mathcal{DS}_n \rangle \geq C \sum_{i=0}^{k-1} a_{i+1}^2 \, \sin^2(\pi eta q_i)$$

Theorem For $f \in \mathcal{C}$ and $q_k \leq n < q_{k+1}$

$$\langle \mathit{DS}_n
angle \geq C \, \sum_{i=0}^{k-1} a_{i+1}^2 |c_{q_i}|^2$$

Example:
$$f(x) = \chi_{[0,\beta)}(x) - \beta$$
,

$$f_r = \frac{c_r}{r} = \frac{\sin(\pi r \beta)}{\pi r} e^{-i\pi r \beta}, \quad (r \neq 0)$$

and

$$q_k \le n < q_{k+1} \Longrightarrow \langle DS_n \rangle \ge C \sum_{i=0}^{k-1} a_{i+1}^2 \, \sin^2(\pi \beta q_i)$$

If $a_i = O(1)$ and $\beta = 1/2$ we get a logarithmic lower bound.

Stronger stochastic properties along subsequences

Stronger stochastic properties along subsequences

In view of the above, in searching for a diffusive behavior of the ergodic sums one has to consider subsequences and to use the scale given by the q_k 's.

Stronger stochastic properties along subsequences

In view of the above, in searching for a diffusive behavior of the ergodic sums one has to consider subsequences and to use the scale given by the q_k 's.

Indeed, it turns out that (using the lower bounds obtained above) we can use a slight extension of a theorem due to Berkes and Philipp (Acta Math. Acad. Sci. Hungar. 34 (1979), no. 1-2, 141-155) giving an approximation of lacunary series of the form $\sum_{k=1}^{N} f_k(n_k x)$ by a Wiener process (ASIP).

Theorem

Theorem Let $f = \sum_{r \neq 0} \frac{c_r}{r} e^{2\pi i r x} \in \mathcal{C}$, and set $\ell_N = \sum_{k=1}^N q_{n_k}$ where (n_k) is a sequence of integers.

1)
$$\frac{1}{\sqrt{N}} \sum_{k=1}^{N} \frac{1}{\sqrt{a_{n_k+1}}} \to 0$$
 ,

1)
$$\frac{1}{\sqrt{N}} \sum_{k=1}^{N} \frac{1}{\sqrt{a_{n_k+1}}} \to 0$$
 , 2) $\sum_{k=1}^{N} \sum_{r \neq 0} \frac{c_{rq_{n_k}}^2}{r^2} \ge C N$

1)
$$\frac{1}{\sqrt{N}} \sum_{k=1}^{N} \frac{1}{\sqrt{a_{n_k+1}}} \to 0$$
 , 2) $\sum_{k=1}^{N} \sum_{r \neq 0} \frac{c_{rq_{n_k}}^2}{r^2} \ge C N$

then the distribution of $S_{\ell_N}/\sqrt{DS_{\ell_N}}$ is asymptotically normal.

1)
$$\frac{1}{\sqrt{N}} \sum_{k=1}^{N} \frac{1}{\sqrt{a_{n_k+1}}} \to 0$$
 , 2) $\sum_{k=1}^{N} \sum_{r \neq 0} \frac{c_{rq_{n_k}}^2}{r^2} \ge C N$

then the distribution of $S_{\ell_N}/\sqrt{DS_{\ell_N}}$ is asymptotically normal. If, moreover, $a_{n_k+1} \geq k^{\gamma}$, with $\gamma > 1$, then, keeping its distribution, the sequence $(S_{\ell_N})_{N\geq 1}$ can be redefined on a larger probability space together with a Wiener process W(t) s.t.

$$S_{\ell_N} = W(\tau_N) + o(N^{\frac{1}{2}-\lambda})$$
 a.s.

where $\lambda > 0$ is an absolute constant and τ_N is an increasing sequence of r.v.'s such that $\tau_N/\sqrt{DS_{\ell_N}} \to 1$ a.s.

Billiard flow in the plane with identical \mathbb{Z}^2 -periodically distributed rectangular obstacles $R_{(m,n)}(a,b)$ of size $a \cdot b$ with 0 < a,b < 1 and $a/b \in \mathbb{R} \setminus \mathbb{Q}$.

Billiard flow in the plane with identical \mathbb{Z}^2 -periodically distributed rectangular obstacles $R_{(m,n)}(a,b)$ of size $a \cdot b$ with 0 < a,b < 1 and $a/b \in \mathbb{R} \setminus \mathbb{Q}$.

Billiard flow in the plane with identical \mathbb{Z}^2 -periodically distributed rectangular obstacles $R_{(m,n)}(a,b)$ of size $a \cdot b$ with 0 < a,b < 1 and $a/b \in \mathbb{R} \setminus \mathbb{Q}$.

An orbit of the billiard flow in direction (1, 1) for the rectangular Lorenz gas.

Under the geometrical condition of "small obstacles":

$$pa + qb \leq 1$$

one can decompose (the conservative part of) the billiard map in the (rational) direction (p,q), on the polygonal surface $\mathbb{R}^2 \setminus \bigcup_{(m,n) \in \mathbb{Z}^2} R_{(m,n)}(a,b)$, into 2pq isomorphic ergodic components, where it can be expressed as a skew product over a rotation, namely a map of the form:

$$(x, y) \rightarrow (x + \alpha, y + \varphi(x))$$

where $\alpha \in \mathbb{R} \setminus \mathbb{Q}$ and the displacement function $\varphi : \mathbb{R}/\mathbb{Z} \to \mathbb{Z}^2$ is a suitable step function.

Under the geometrical condition of "small obstacles":

$$pa + qb \leq 1$$

one can decompose (the conservative part of) the billiard map in the (rational) direction (p,q), on the polygonal surface $\mathbb{R}^2 \setminus \bigcup_{(m,n) \in \mathbb{Z}^2} R_{(m,n)}(a,b)$, into 2pq isomorphic ergodic components, where it can be expressed as a skew product over a rotation, namely a map of the form:

$$(x, y) \rightarrow (x + \alpha, y + \varphi(x))$$

where $\alpha \in \mathbb{R} \setminus \mathbb{Q}$ and the displacement function $\varphi : \mathbb{R}/\mathbb{Z} \to \mathbb{Z}^2$ is a suitable step function.

Then apply the above results...