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Introduction

Let Hn be a random n × n Hermitian matrix such that its
probability distribution is

P (dHn) ∝ e−Tr(V (Hn))dHn,

where V ∶ R→ R is the potential.

Hence, its eigenvalue density function is

1

Z(n)
e−∑

n
i=1 V (λi)

∏

i>j

∣λi − λj ∣
2.

We consider ratios of characteristic polynomials:

det(α1 −Hn)⋯det(αk −Hn)

det(β1 −Hn)⋯det(βk −Hn)
. (1)
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Motivation and related works

The expectations of ratios of type (1) has been extensively
studied in relation with quantum chaotic systems and
analytic number theory (Riemann zeta function).

Methods used: classical analysis, representation theory,
supersymmetry techniques.
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Motivation and related works

Andreev, Simons1: study expectation of type (1) in quantum
chaotic systems with broken T -invariance in the case of GUE.

Borodin, Strahov 2 expectation of the ratios of type (1) in
the case of GUE, GOE and GSE. Explicit determinantal
expressions have been obtained.

Fyodorov, Strahov 3 ratios and products have been studied
for the even polynomial potential V . Exact and asymptotic
determinantal expressions have been obtained
(Riemann-Hilbert approach).

1Phys.Rev.Lett., 75, 1995
2Comm. Pure. Appl. Math., 59(2), 2006
3J. of Phys. A, 36, 2003
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Related works

Chhaibi, Najnudel and Nikeghbali: 4

Un is n × n CUE, i.e. its eigenphases density function is given
by

1

ZCUE
n

∏

k<j

∣eiθj − eiθk ∣
2
.

ξCUEn (s) ∶=
det(Id−U−1n e2iπs/n)

det(Id−U−1n )
.

4will appear in Invent. Math
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ξ∞(s) ∶= lim
Y→∞

∏

∣yi∣≤Y

(1 −
s

yi
),

converges for all s ∈ C,
is a random entire function.

ξ∞(s) is called the limiting characteristic polynomial.

Points yi form a determinantal point process with sine kernel.

The determinantal sine-kernel point process is a point process
with the r-point correlation function ρr given as follows:

ρr(x1, . . . , xr) = det(
sin(π(xi − xj))

π(xi − xj)
)

1≤i,j≤r

.
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Related works

Theorem (Chhaibi, Najnudel and Nikeghbali)

ξCUEn (s) converge in law to eiπsξ∞(s), endowed with the topology
of uniform convergence on compact sets.

In order to prove the above mentioned convergence in
distribution, a stronger result, a. s. convergence, was also
shown. This has been achieved by using the recursive
representation of Haar measure and virtual isometries
(Bourgade, Hughes, Najnudel Nikeghbali, Yor).
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Semicircular law

From now on we restrict ourselves to the case of GUE (V (x) = x2

2 ).

Theorem (The semicircular law)

For any continuous and compactly supported function f ∶ R→ C,

lim
n→∞

E [
1

n

n

∑

i=1

f (
λi
√

n
)] = ∫ ρsc(x)f(x)dx,

with

ρsc(x) ∶=
1

2π

√

(4 − x2)+.
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Determinantal Point Processes and GUE

The eigenvalue density for GUE is

1

ZGUE(n)
e−∑

n
i=1

λ2i
2 ∏

i>j

∣λi − λj ∣
2
∝ det (Kn(λi, λj))1≤i,j≤n ,

where Kn(x, y) = ∑
n−1
k=0 Hk(x)e

−x
2

4 Hk(y)e
−
y2

4 .

Hence, the eigenvalues of GUE form a determinantal point
process.

Gaudin, Mehta: Moreover, after normalization they converge
to sine-determinantal PP.
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Determinantal Point Processes and GUE

Theorem (Gaudin-Mehta)

For any E ∈ (−2,2) and any piecewise continuous and compactly
supported function η, the random variable

∞

∑

i=1

η(nρsc(E)(
λi
√

n
−E)),

tends as n→∞ in distribution to

∑

i

η(yi).
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Main Result

Theorem (Main result)

We define the random analytic function

ξGUEn (s) ∶=
det ( − sπ√

n
+Hn)

det(Hn)
,

Then in the topology of uniform convergence on compact sets in
the variable s, in distribution,

ξGUEn (s) → ξ∞(s).
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Idea of the Proof

For any fixed s ∈ C and K > 0

P (∣log ∣ξGUEn (s)∣∣ ≥ x) = OK(e−Kx),

uniformly in n.

We need to obtain fine estimates for

E(∑

i

f(λi)) = ∫
R
f(x)Kn(x,x)dx,

Var(∑
i

f(λi)) =
1

2
∬

R2
(f(x) − f(y))2K2

n(x, y)dxdy.

It has been achieved by using Plancherel-Rotach asymptotics:
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Consequence

Remark

The similar result has been obtained for the ratios of the type

det ( − s
ρsc(E)

√
n
−E

√

n +Hn)

det(−E
√

n +Hn)
,

for fixed E ∈ (−2,2).

Consequence

k

∏

i=1

det ( − si
ρsc(E)

√
n
−E

√

n +Hn)

det ( − ui
ρsc(E)

√
n
−E

√

n +Hn)

→

k

∏

i=1

ξ∞(si)

ξ∞(ui)
.



Introduction
Motivation and related works

Initial Settings and Known Results
Main Result

Open Questions

Outline

1 Introduction

2 Motivation and related works

3 Initial Settings and Known Results

4 Main Result

5 Open Questions



Introduction
Motivation and related works

Initial Settings and Known Results
Main Result

Open Questions

Open Questions

The ratios for the general potential V.
For example: when V is a polynomial with even degree with a
positive leading coefficient. Eigenvalues are determinantal PP.
Instead of Hermite polynomials we have orthonormal
polynomial w.r.t the weight e−V (x) (Deift 2000).

Ratios for Wigner matrices: the eigenvalues are not
determinantal PP, however, they converge to sine
determinantal PP.
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Open Questions

Ratios at the edge:

det (2
√

n + s
n1/6 −Hn)

det (2
√

n −Hn)

The zeros of the limiting characteristic polynomial will form
Airy determinantal PP.
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End

Thank you for the attention!!
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