A limiting characteristic polynomial of GUE

Emma Hovhannisyan Universität Zürich

Joint Work with R. Chhaibi, J. Najnudel, A. Nikeghbali, B. Rodgers

September 9, 2016

Outline

- Introduction
- 2 Motivation and related works
- Initial Settings and Known Results
- 4 Main Result
- Open Questions

Introduction

• Let H_n be a random $n \times n$ Hermitian matrix such that its probability distribution is

$$P(dH_n) \propto e^{-\text{Tr}(V(H_n))} dH_n,$$

where $V: \mathbb{R} \to \mathbb{R}$ is the potential.

Hence, its eigenvalue density function is

$$\frac{1}{Z(n)}e^{-\sum_{i=1}^{n}V(\lambda_i)}\prod_{i>j}|\lambda_i-\lambda_j|^2.$$

We consider ratios of characteristic polynomials:

$$\frac{\det(\alpha_1 - H_n) \cdots \det(\alpha_k - H_n)}{\det(\beta_1 - H_n) \cdots \det(\beta_k - H_n)}.$$
 (1)

Introduction

• Let H_n be a random $n \times n$ Hermitian matrix such that its probability distribution is

$$P(dH_n) \propto e^{-\text{Tr}(V(H_n))} dH_n,$$

where $V: \mathbb{R} \to \mathbb{R}$ is the potential.

Hence, its eigenvalue density function is

$$\frac{1}{Z(n)}e^{-\sum_{i=1}^{n}V(\lambda_i)}\prod_{i>j}|\lambda_i-\lambda_j|^2.$$

We consider ratios of characteristic polynomials:

$$\frac{\det(\alpha_1 - H_n) \cdots \det(\alpha_k - H_n)}{\det(\beta_1 - H_n) \cdots \det(\beta_k - H_n)}.$$
 (1)

Introduction

• Let H_n be a random $n \times n$ Hermitian matrix such that its probability distribution is

$$P(dH_n) \propto e^{-\text{Tr}(V(H_n))} dH_n,$$

where $V: \mathbb{R} \to \mathbb{R}$ is the potential.

Hence, its eigenvalue density function is

$$\frac{1}{Z(n)}e^{-\sum_{i=1}^{n}V(\lambda_i)}\prod_{i>j}|\lambda_i-\lambda_j|^2.$$

We consider ratios of characteristic polynomials:

$$\frac{\det(\alpha_1 - H_n) \cdots \det(\alpha_k - H_n)}{\det(\beta_1 - H_n) \cdots \det(\beta_k - H_n)}.$$
 (1)

Outline

- Introduction
- 2 Motivation and related works
- Initial Settings and Known Results
- 4 Main Result
- 5 Open Questions

- The expectations of ratios of type (1) has been extensively studied in relation with quantum chaotic systems and analytic number theory (Riemann zeta function).
- Methods used: classical analysis, representation theory, supersymmetry techniques.

- The expectations of ratios of type (1) has been extensively studied in relation with quantum chaotic systems and analytic number theory (Riemann zeta function).
- Methods used: classical analysis, representation theory, supersymmetry techniques.

- Andreev, Simons¹: study expectation of type (1) in quantum chaotic systems with broken *T*-invariance in the case of GUE.
- Borodin, Strahov ² expectation of the ratios of type (1) in the case of GUE, GOE and GSE. Explicit determinantal expressions have been obtained.
- Fyodorov, Strahov 3 ratios and products have been studied for the even polynomial potential V. Exact and asymptotic determinantal expressions have been obtained (Riemann-Hilbert approach).

¹Phys.Rev.Lett., 75, 1995

²Comm. Pure. Appl. Math., 59(2), 2006

³ L of Phys. A 36, 2003

- Andreev, Simons¹: study expectation of type (1) in quantum chaotic systems with broken *T*-invariance in the case of GUE.
- Borodin, Strahov ² expectation of the ratios of type (1) in the case of GUE, GOE and GSE. Explicit determinantal expressions have been obtained.
- **Fyodorov**, **Strahov** ³ ratios and products have been studied for the even polynomial potential *V*. Exact and asymptotic determinantal expressions have been obtained (Riemann-Hilbert approach).

¹Phys.Rev.Lett., 75, 1995

²Comm. Pure. Appl. Math., 59(2), 2006

³ L of Phys. A. 36, 2003

- Andreev, Simons¹: study expectation of type (1) in quantum chaotic systems with broken *T*-invariance in the case of GUE.
- **Borodin, Strahov** ² expectation of the ratios of type (1) in the case of GUE, GOE and GSE. Explicit determinantal expressions have been obtained.
- **Fyodorov, Strahov** 3 ratios and products have been studied for the even polynomial potential V. Exact and asymptotic determinantal expressions have been obtained (Riemann-Hilbert approach).

¹Phys.Rev.Lett., 75, 1995

²Comm. Pure. Appl. Math., 59(2), 2006

³J. of Phys. A, 36, 2003

Related works

Chhaibi, Najnudel and Nikeghbali: 4

 \bullet U_n is $n\times n$ CUE, i.e. its eigenphases density function is given by

$$\frac{1}{Z_n^{\text{CUE}}} \prod_{k < j} \left| e^{i\theta_j} - e^{i\theta_k} \right|^2.$$

•
$$\xi_n^{CUE}(s) := \frac{\det(\operatorname{Id}-U_n^{-1}e^{2i\pi s/n})}{\det(\operatorname{Id}-U_n^{-1})}.$$

⁴will appear in Invent. Math

Related works

Chhaibi, Najnudel and Nikeghbali: 4

• U_n is $n \times n$ CUE, i.e. its eigenphases density function is given by

$$\frac{1}{Z_n^{\text{CUE}}} \prod_{k < j} \left| e^{i\theta_j} - e^{i\theta_k} \right|^2.$$

•
$$\xi_n^{CUE}(s) \coloneqq \frac{\det(\operatorname{Id}-U_n^{-1}e^{2i\pi s/n})}{\det(\operatorname{Id}-U_n^{-1})}.$$

⁴will appear in Invent. Math

Related Works

•
$$\xi_{\infty}(s) \coloneqq \lim_{Y \to \infty} \prod_{|y_i| \le Y} \left(1 - \frac{s}{y_i}\right),$$

- converges for all $s \in \mathbb{C}$,
- is a random entire function.

$\xi_{\infty}(s)$ is called the **limiting characteristic polynomial**.

- ullet Points y_i form a determinantal point process with sine kernel.
- The determinantal sine-kernel point process is a point process with the r-point correlation function ρ_r given as follows:

$$\rho_r(x_1,\ldots,x_r) = \det\left(\frac{\sin(\pi(x_i-x_j))}{\pi(x_i-x_j)}\right)_{1\leq i,j\leq r}.$$

Related Works

•
$$\xi_{\infty}(s) := \lim_{Y \to \infty} \prod_{|y_i| \le Y} \left(1 - \frac{s}{y_i}\right),$$

- converges for all $s \in \mathbb{C}$,
- is a random entire function.

 $\xi_{\infty}(s)$ is called the **limiting characteristic polynomial**.

- ullet Points y_i form a determinantal point process with sine kernel.
- The determinantal sine-kernel point process is a point process with the r-point correlation function ρ_r given as follows:

$$\rho_r(x_1,\ldots,x_r) = \det\left(\frac{\sin(\pi(x_i-x_j))}{\pi(x_i-x_j)}\right)_{1 \le i,j \le r}$$

Related Works

•
$$\xi_{\infty}(s) := \lim_{Y \to \infty} \prod_{|y_i| \le Y} \left(1 - \frac{s}{y_i}\right),$$

- converges for all $s \in \mathbb{C}$,
- is a random entire function.

 $\xi_{\infty}(s)$ is called the **limiting characteristic polynomial**.

- Points y_i form a determinantal point process with sine kernel.
- The determinantal sine-kernel point process is a point process with the r-point correlation function ρ_r given as follows:

$$\rho_r(x_1,\ldots,x_r) = \det\left(\frac{\sin(\pi(x_i-x_j))}{\pi(x_i-x_j)}\right)_{1 \le i,j \le r}.$$

Related works

Theorem (Chhaibi, Najnudel and Nikeghbali)

 $\xi_n^{CUE}(s)$ converge in law to $e^{i\pi s}\xi_\infty(s)$, endowed with the topology of uniform convergence on compact sets.

 In order to prove the above mentioned convergence in distribution, a stronger result, a. s. convergence, was also shown. This has been achieved by using the recursive representation of Haar measure and virtual isometries (Bourgade, Hughes, Najnudel Nikeghbali, Yor).

Related works

Theorem (Chhaibi, Najnudel and Nikeghbali)

 $\xi_n^{CUE}(s)$ converge in law to $e^{i\pi s}\xi_\infty(s)$, endowed with the topology of uniform convergence on compact sets.

 In order to prove the above mentioned convergence in distribution, a stronger result, a. s. convergence, was also shown. This has been achieved by using the recursive representation of Haar measure and virtual isometries (Bourgade, Hughes, Najnudel Nikeghbali, Yor).

Outline

- Introduction
- 2 Motivation and related works
- 3 Initial Settings and Known Results
- 4 Main Result
- Open Questions

Semicircular law

From now on we restrict ourselves to the case of GUE $(V(x) = \frac{x^2}{2})$.

Theorem (The semicircular law)

For any continuous and compactly supported function $f: \mathbb{R} \to \mathbb{C}$,

$$\lim_{n \to \infty} \mathbb{E} \left[\frac{1}{n} \sum_{i=1}^{n} f\left(\frac{\lambda_i}{\sqrt{n}}\right) \right] = \int \rho_{sc}(x) f(x) dx,$$

with

$$\rho_{sc}(x) \coloneqq \frac{1}{2\pi} \sqrt{(4-x^2)_+}.$$

• The eigenvalue density for GUE is

$$\frac{1}{Z^{GUE}(n)}e^{-\sum_{i=1}^{n}\frac{\lambda_i^2}{2}}\prod_{i>j}|\lambda_i-\lambda_j|^2 \propto \det\left(K_n(\lambda_i,\lambda_j)\right)_{1\leq i,j\leq n},$$

where
$$K_n(x,y) = \sum_{k=0}^{n-1} H_k(x) e^{-\frac{x^2}{4}} H_k(y) e^{-\frac{y^2}{4}}$$
.

- Hence, the eigenvalues of GUE form a determinantal point process.
- Gaudin, Mehta: Moreover, after normalization they converge to sine-determinantal PP.

• The eigenvalue density for GUE is

$$\frac{1}{Z^{GUE}(n)}e^{-\sum_{i=1}^{n}\frac{\lambda_i^2}{2}}\prod_{i>j}|\lambda_i-\lambda_j|^2 \propto \det\left(K_n(\lambda_i,\lambda_j)\right)_{1\leq i,j\leq n},$$

where
$$K_n(x,y) = \sum_{k=0}^{n-1} H_k(x) e^{-\frac{x^2}{4}} H_k(y) e^{-\frac{y^2}{4}}$$
.

- Hence, the eigenvalues of GUE form a determinantal point process.
- Gaudin, Mehta: Moreover, after normalization they converge to sine-determinantal PP.

• The eigenvalue density for GUE is

$$\frac{1}{Z^{GUE}(n)}e^{-\sum_{i=1}^{n}\frac{\lambda_i^2}{2}}\prod_{i>j}|\lambda_i-\lambda_j|^2 \propto \det\left(K_n(\lambda_i,\lambda_j)\right)_{1\leq i,j\leq n},$$

where
$$K_n(x,y) = \sum_{k=0}^{n-1} H_k(x) e^{-\frac{x^2}{4}} H_k(y) e^{-\frac{y^2}{4}}$$
.

- Hence, the eigenvalues of GUE form a determinantal point process.
- Gaudin, Mehta: Moreover, after normalization they converge to sine-determinantal PP.

Theorem (Gaudin-Mehta)

For any $E \in (-2,2)$ and any piecewise continuous and compactly supported function η , the random variable

$$\sum_{i=1}^{\infty} \eta \Big(n \rho_{sc}(E) \Big(\frac{\lambda_i}{\sqrt{n}} - E \Big) \Big),$$

tends as $n \to \infty$ in distribution to

$$\sum_{i} \eta(y_i).$$

Outline

- Introduction
- 2 Motivation and related works
- 3 Initial Settings and Known Results
- 4 Main Result
- Open Questions

Main Result

Theorem (Main result)

We define the random analytic function

$$\xi_n^{GUE}(s) \coloneqq \frac{\det\left(-\frac{s\pi}{\sqrt{n}} + H_n\right)}{\det(H_n)},$$

Then in the topology of uniform convergence on compact sets in the variable s, in distribution,

$$\xi_n^{GUE}(s) \to \xi_\infty(s).$$

Idea of the Proof

• For any fixed $s \in \mathbb{C}$ and K > 0

$$\mathbb{P}\left(\left|\log\left|\xi_n^{GUE}(s)\right|\right| \ge x\right) = O_K(e^{-Kx}),$$

uniformly in n.

We need to obtain fine estimates for

$$\mathbb{E}\left(\sum_{i} f(\lambda_{i})\right) = \int_{\mathbb{R}} f(x) K_{n}(x, x) dx,$$

$$\operatorname{Var}\left(\sum_{i} f(\lambda_{i})\right) = \frac{1}{2} \iint_{\mathbb{R}^{2}} (f(x) - f(y))^{2} K_{n}^{2}(x, y) dx dy.$$

• It has been achieved by using Plancherel-Rotach asymptotics:

Idea of the Proof

• For any fixed $s \in \mathbb{C}$ and K > 0

$$\mathbb{P}\left(\left|\log\left|\xi_n^{GUE}(s)\right|\right| \ge x\right) = O_K(e^{-Kx}),$$

uniformly in n.

We need to obtain fine estimates for

$$\mathbb{E}\left(\sum_{i} f(\lambda_{i})\right) = \int_{\mathbb{R}} f(x) K_{n}(x, x) dx,$$

$$\operatorname{Var}\left(\sum_{i} f(\lambda_{i})\right) = \frac{1}{2} \iint_{\mathbb{R}^{2}} (f(x) - f(y))^{2} K_{n}^{2}(x, y) dx dy.$$

• It has been achieved by using Plancherel-Rotach asymptotics:

Consequence

Remark

The similar result has been obtained for the ratios of the type

$$\frac{\det\left(-\frac{s}{\rho_{sc}(E)\sqrt{n}} - E\sqrt{n} + H_n\right)}{\det(-E\sqrt{n} + H_n)},$$

for fixed $E \in (-2, 2)$.

Consequence

$$\prod_{i=1}^{k} \frac{\det\left(-\frac{s_i}{\rho_{sc}(E)\sqrt{n}} - E\sqrt{n} + H_n\right)}{\det\left(-\frac{u_i}{\rho_{sc}(E)\sqrt{n}} - E\sqrt{n} + H_n\right)} \to \prod_{i=1}^{k} \frac{\xi^{\infty}(s_i)}{\xi^{\infty}(u_i)}.$$

Outline

- Introduction
- 2 Motivation and related works
- Initial Settings and Known Results
- 4 Main Result
- Open Questions

Open Questions

- The ratios for the general potential V. For example: when V is a polynomial with even degree with a positive leading coefficient. Eigenvalues are determinantal PP. Instead of Hermite polynomials we have orthonormal polynomial w.r.t the weight $e^{-V(x)}$ (Deift 2000).
- Ratios for Wigner matrices: the eigenvalues are not determinantal PP, however, they converge to sine determinantal PP

Open Questions

- The ratios for the general potential V. For example: when V is a polynomial with even degree with a positive leading coefficient. Eigenvalues are determinantal PP. Instead of Hermite polynomials we have orthonormal polynomial w.r.t the weight $e^{-V(x)}$ (Deift 2000).
- Ratios for Wigner matrices: the eigenvalues are not determinantal PP, however, they converge to sine determinantal PP.

Open Questions

Ratios at the edge:

$$\frac{\det\left(2\sqrt{n} + \frac{s}{n^{1/6}} - H_n\right)}{\det\left(2\sqrt{n} - H_n\right)}$$

The zeros of the limiting characteristic polynomial will form Airy determinantal PP.

End

Thank you for the attention!!