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Definition

Λ ⊂ Rd

parameters : R > 0, q > 0 and z > 0

πzΛ the distribution of a Poisson point process on Λ with
intensity z > 0.

Definition
The finite volume CRCM on Λ is defined by

P z,RΛ (dγ) =
1

ZΛ
qNcc(γ)πzΛ(dγ),

where Ncc(γ) is the number of connected components in⋃
x∈γ

B(x,R).
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Motivations

Statistical Physics : Gray representation of the
Widom-Rowlinson model (Chayes, Chayes and Koteckỳ 95)
Stochastic geometry : for modelling germ-grain structures
(Helisova, Möller 2008)

The setting of our work :
Random radii : R is random and follow the distribution Q
on R+

Infinite volume version (DLR equations)
Phase transition phenomena
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DLR equations

Definition

Let Λ ⊂ Rd. The local modification of Ncc in Λ is defined by

NΛ
cc(γ) = lim

∆ 7→Rd
Ncc(γΛ)−Ncc(γΛ\∆)

Definition (DLR equations)
A probability measure P on the set of infinite configurations is a
CRCM if for any bounded Λ ⊂ Rd

P (dγΛ|γΛc) =
1

ZΛ(γΛc)
qN

Λ
cc(γ)πz,QΛ (dγΛ).
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Existence results

Theorem (Der.-Houdebert)

If there exits R0 > 0 such that Q([0, R0]) = 1, then for any
z > 0 and any q > 0 it exists at least one CRCM.
If

∫ +∞
0 RdQ(dR) < +∞, then for any z > 0 and any q ≥ 1

it exists at least one CRCM.

Ingredients for the proof :

entropy tightness tool 7→ accumulation point
Burton and Keane argument 7→ uniqueness of the infinite
connected component
fine study of Gibbs kernels 7→ DLR equations
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Phase transition results

Corollary

In the setting
∫ +∞

0 RdQ(dR) < +∞, the Widom-Rowlinson
model exhibits a phase transition. There exists 0 < z0 < z1 <∞,
such that

for z < z0, the WR model is unique.
for z > z1, the WR model is not unique.
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Which extreme regime ?

Assumption :
∫ +∞

0 RdQ(dR) =∞

The existence of a CRCM is obvious : πz,Q is a CRCM

P (dγΛ|γΛc) =
1

ZΛ(γΛc)
qN

Λ
cc(γ)πz,QΛ (dγΛ).

Question : Is there exist different CRCM from πz,Q ?
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Result

Theorem (Der.-Houdebert)
For any integer q ≥ 2, there exists z0 > 0 such that for any
z < z0, there exists a CRCM different from πz,Q.

Conjecture
For any q > 1, there exists z1 > 0 such that for any z > z1,
there exists an unique CRCM which is simply πz,Q.

We proved the conjecture for d = 1. The general case is in
progress...
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Sketch of the proof

-We prove the existence of a WR model with two different
colors.

-Let Λn = [−n, n]d and Pn the WR model on Λn.
-By standard tightness entropy tool, Pn 7→ P .

P (monochromatic) < 1?

Specific entropy : I(Q) = limn→∞
1
|Λn|I(PΛn |π

⊗q
Λn

)

Lemma
For any monochromatic probability measure Q

I(Q) ≥ (q − 1)z.

Lemma
For z small enough

I(P ) < (q − 1)z.
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