Infinite volume continuum random cluster model

David Dereudre,
(Joint work with Pierre Houdebert)
Laboratoire de Mathématiques Paul Painlevé,
University Lille 1, France

Conference SAMMP, Yerevan 2016
1 Finite volume CRCM

2 Results

3 An extreme regime
Finite volume CRCM
Definition

- $\Lambda \subset \mathbb{R}^d$
- parameters: $R > 0$, $q > 0$ and $z > 0$
- π_{Λ} the distribution of a Poisson point process on Λ with intensity $z > 0$.
Definition

- $\Lambda \subset \mathbb{R}^d$
- Parameters: $R > 0$, $q > 0$ and $z > 0$
- π^Λ the distribution of a Poisson point process on Λ with intensity $z > 0$.

Definition

The finite volume CRCM on Λ is defined by

$$P_{\Lambda}^{\tilde{z}, R}(d\gamma) = \frac{1}{Z_\Lambda} q^{N_{cc}(\gamma)} \pi^\Lambda(d\gamma),$$

where $N_{cc}(\gamma)$ is the number of connected components in

$$\bigcup_{x \in \gamma} B(x, R).$$
Motivations

- Statistical Physics: Gray representation of the Widom-Rowlinson model (Chayes, Chayes and Kotecký 95)
- Stochastic geometry: for modelling germ-grain structures (Helisova, Möller 2008)
Motivations

- Statistical Physics: Gray representation of the Widom-Rowlinson model (Chayes, Chayes and Kotecky 95)
- Stochastic geometry: for modelling germ-grain structures (Helisova, Möller 2008)

The setting of our work:

- Random radii: R is random and follow the distribution Q on \mathbb{R}^+
- Infinite volume version (DLR equations)
- Phase transition phenomena
2 Results
Definition

Let \(\Lambda \subset \mathbb{R}^d \). The local modification of \(N_{cc} \) in \(\Lambda \) is defined by

\[
N_{cc}^\Lambda(\gamma) = \lim_{\Delta \to \mathbb{R}^d} N_{cc}(\gamma_\Lambda) - N_{cc}(\gamma_{\Lambda \setminus \Delta})
\]
Definition

Let $\Lambda \subset \mathbb{R}^d$. The local modification of N_{cc} in Λ is defined by

$$N_{cc}^\Lambda(\gamma) = \lim_{\Delta \to \mathbb{R}^d} N_{cc}(\gamma_\Lambda) - N_{cc}(\gamma_{\Lambda \setminus \Delta})$$

Definition (DLR equations)

A probability measure P on the set of infinite configurations is a CRCM if for any bounded $\Lambda \subset \mathbb{R}^d$

$$P(d\gamma_\Lambda | \gamma_{\Lambda^c}) = \frac{1}{Z_\Lambda(\gamma_{\Lambda^c})} q^{N_{cc}^\Lambda(\gamma)} \pi_{\Lambda}^{z,Q}(d\gamma_\Lambda).$$
Existence results

Theorem (Der.-Houdebert)

1. If there exists $R_0 > 0$ such that $Q([0, R_0]) = 1$, then for any $z > 0$ and any $q > 0$ it exists at least one CRCM.

2. If $\int_0^{+\infty} R^dQ(dR) < +\infty$, then for any $z > 0$ and any $q \geq 1$ it exists at least one CRCM.
Existence results

Theorem (Der.-Houdebert)

- If there exists $R_0 > 0$ such that $Q([0, R_0]) = 1$, then for any $z > 0$ and any $q > 0$ it exists at least one CRCM.

- If $\int_{0}^{+\infty} R^dQ(dR) < +\infty$, then for any $z > 0$ and any $q \geq 1$ it exists at least one CRCM.

Ingredients for the proof:

- entropy tightness tool \mapsto accumulation point
- Burton and Keane argument \mapsto uniqueness of the infinite connected component
- fine study of Gibbs kernels \mapsto DLR equations
Phase transition results

Corollary

In the setting $\int_{0}^{+\infty} R^d Q(dR) < +\infty$, the Widom-Rowlinson model exhibits a phase transition. There exists $0 < z_0 < z_1 < \infty$, such that

- for $z < z_0$, the WR model is unique.
- for $z > z_1$, the WR model is not unique.
<table>
<thead>
<tr>
<th>Finite volume CRCM</th>
<th>Results</th>
<th>An extreme regime</th>
</tr>
</thead>
</table>

3. An extreme regime
Which extreme regime?

Assumption: \(\int_0^+ \infty R^d Q(dR) = \infty \)
Assumption: $\int_0^{+\infty} R^d Q(dR) = \infty$

The existence of a CRCM is obvious: $\pi^{z,Q}$ is a CRCM

$$P(d\gamma_\Lambda | \gamma_{\Lambda_c}) = \frac{1}{Z_\Lambda(\gamma_{\Lambda_c})} q_{cc}^{N_\Lambda}(\gamma) \pi^{z,Q}_\Lambda (d\gamma_\Lambda).$$
Which extreme regime?

Assumption: \(\int_{0}^{+\infty} R^d Q(dR) = \infty \)

The existence of a CRCM is obvious: \(\pi^{\mathbb{z}, Q} \) is a CRCM

\[
P(d\gamma|\gamma_{\Lambda_c}) = \frac{1}{Z_{\Lambda}(\gamma_{\Lambda_c})} q^{N_{cc}^\Lambda(\gamma)} \pi_{\Lambda}^{\mathbb{z}, Q}(d\gamma_{\Lambda}).
\]

Question: Is there exist different CRCM from \(\pi^{\mathbb{z}, Q} \)?
Result

Theorem (Der.-Houdebert)

For any integer \(q \geq 2 \), there exists \(z_0 > 0 \) such that for any \(z < z_0 \), there exists a CRCM different from \(\pi^{z,Q} \).
Theorem (Der.-Houdebert)

For any integer \(q \geq 2 \), there exists \(z_0 > 0 \) such that for any \(z < z_0 \), there exists a CRCM different from \(\pi^{z,Q} \).

Conjecture

For any \(q > 1 \), there exists \(z_1 > 0 \) such that for any \(z > z_1 \), there exists an unique CRCM which is simply \(\pi^{z,Q} \).

We proved the conjecture for \(d = 1 \). The general case is in progress...
Sketch of the proof

- We prove the existence of a WR model with two different colors.
Sketch of the proof

- We prove the existence of a WR model with two different colors.
- Let $\Lambda_n = [-n, n]^d$ and P_n the WR model on Λ_n.
- By standard tightness entropy tool, $P_n \rightarrow P$.

Specific entropy:
$$I(Q) = \lim_{n \to \infty} \frac{1}{|\Lambda_n|} I(P_{\Lambda_n} \mid \pi \otimes q_{\Lambda_n})$$

Lemma

For any monochromatic probability measure Q, $I(Q) \geq (q-1)z$.

Lemma

For z small enough, $I(P) < (q-1)z$.

Sketch of the proof

- We prove the existence of a WR model with two different colors.
- Let $\Lambda_n = [-n, n]^d$ and P_n the WR model on Λ_n.
- By standard tightness entropy tool, $P_n \rightharpoonup P$.

$$P(\text{monochromatic}) < 1?$$
Sketch of the proof

- We prove the existence of a WR model with two different colors.
- Let $\Lambda_n = [-n, n]^d$ and P_n the WR model on Λ_n.
- By standard tightness entropy tool, $P_n \rightharpoonup P$.

$$P(\text{monochromatic}) < 1?$$

Specific entropy: $I(Q) = \lim_{n \to \infty} \frac{1}{|\Lambda_n|} I(P_{\Lambda_n} | \pi_{\Lambda_n}^{\otimes q})$

Lemma

For any monochromatic probability measure Q

$$I(Q) \geq (q - 1)z.$$
Sketch of the proof

- We prove the existence of a WR model with two different colors.
- Let $\Lambda_n = [-n, n]^d$ and P_n the WR model on Λ_n.
- By standard tightness entropy tool, $P_n \rightharpoonup P$.

$$P(\text{monochromatic}) < 1?$$

Specific entropy: $I(Q) = \lim_{n \to \infty} \frac{1}{|\Lambda_n|} I(P_{\Lambda_n} | \pi_{\Lambda_n} \otimes q)$

Lemma

For any monochromatic probability measure Q

$$I(Q) \geq (q - 1)z.$$

Lemma

For z small enough

$$I(P) < (q - 1)z.$$