Infinite volume continuum random cluster model

David Dereudre,

(Joint work with Pierre Houdebert) Laboratoire de Mathématiques Paul Painlevé, University Lille 1, France

Conference SAMMP, Yerevan 2016

Finite volume CRCM

2 Results

3 An extreme regime

1 Finite volume CRCM

Definition

- \bullet $\Lambda \subset \mathbb{R}^d$
- parameters : R > 0, q > 0 and z > 0
- π_{Λ}^{z} the distribution of a Poisson point process on Λ with intensity z > 0.

Definition

- \bullet $\Lambda \subset \mathbb{R}^d$
- parameters : R > 0, q > 0 and z > 0
- π_{Λ}^{z} the distribution of a Poisson point process on Λ with intensity z > 0.

Definition

The finite volume CRCM on Λ is defined by

$$P_{\Lambda}^{z,R}(d\gamma) = \frac{1}{Z_{\Lambda}} q^{N_{cc}(\gamma)} \pi_{\Lambda}^{z}(d\gamma),$$

where $N_{cc}(\gamma)$ is the number of connected components in

$$\bigcup_{x \in \gamma} B(x, R).$$

Motivations

- Statistical Physics: Gray representation of the Widom-Rowlinson model (Chayes, Chayes and Koteckỳ 95)
- Stochastic geometry : for modelling germ-grain structures (Helisova, Möller 2008)

Motivations

- Statistical Physics: Gray representation of the Widom-Rowlinson model (Chayes, Chayes and Koteckỳ 95)
- Stochastic geometry : for modelling germ-grain structures (Helisova, Möller 2008)

The setting of our work:

- Random radii : R is random and follow the distribution Q on \mathbb{R}^+
- Infinite volume version (DLR equations)
- Phase transition phenomena

2 Results

DLR equations

Definition

Let $\Lambda \subset \mathbb{R}^d$. The local modification of N_{cc} in Λ is defined by

$$N_{cc}^{\Lambda}(\gamma) = \lim_{\Delta \to \mathbb{R}^d} N_{cc}(\gamma_{\Lambda}) - N_{cc}(\gamma_{\Lambda \setminus \Delta})$$

DLR equations

Definition

Let $\Lambda \subset \mathbb{R}^d$. The local modification of N_{cc} in Λ is defined by

$$N_{cc}^{\Lambda}(\gamma) = \lim_{\Lambda \to \mathbb{R}^d} N_{cc}(\gamma_{\Lambda}) - N_{cc}(\gamma_{\Lambda \setminus \Delta})$$

Definition (DLR equations)

A probability measure P on the set of infinite configurations is a CRCM if for any bounded $\Lambda \subset \mathbb{R}^d$

$$P(d\gamma_{\Lambda}|\gamma_{\Lambda_c}) = \frac{1}{Z_{\Lambda}(\gamma_{\Lambda^c})} q^{N_{cc}^{\Lambda}(\gamma)} \pi_{\Lambda}^{z,Q}(d\gamma_{\Lambda}).$$

Existence results

Theorem (Der.-Houdebert)

- If there exits $R_0 > 0$ such that $Q([0, R_0]) = 1$, then for any z > 0 and any q > 0 it exists at least one CRCM.
- If $\int_0^{+\infty} R^d Q(dR) < +\infty$, then for any z > 0 and any $q \ge 1$ it exists at least one CRCM.

Existence results

Theorem (Der.-Houdebert)

- If there exits $R_0 > 0$ such that $Q([0, R_0]) = 1$, then for any z > 0 and any q > 0 it exists at least one CRCM.
- If $\int_0^{+\infty} R^d Q(dR) < +\infty$, then for any z > 0 and any $q \ge 1$ it exists at least one CRCM.

Ingredients for the proof:

- entropy tightness tool \mapsto accumulation point
- Burton and Keane argument → uniqueness of the infinite connected component
- fine study of Gibbs kernels \mapsto DLR equations

Phase transition results

Corollary

In the setting $\int_0^{+\infty} R^d Q(dR) < +\infty$, the Widom-Rowlinson model exhibits a phase transition. There exists $0 < z_0 < z_1 < \infty$, such that

- for $z < z_0$, the WR model is unique.
- for $z > z_1$, the WR model is not unique.

3 An extreme regime

Which extreme regime?

Assumption :
$$\int_0^{+\infty} R^d Q(dR) = \infty$$

Which extreme regime?

Assumption : $\int_0^{+\infty} R^d Q(dR) = \infty$ The existence of a CRCM is obvious : $\pi^{z,Q}$ is a CRCM

$$P(d\gamma_{\Lambda}|\gamma_{\Lambda_c}) = \frac{1}{Z_{\Lambda}(\gamma_{\Lambda^c})} q^{N_{cc}^{\Lambda}(\gamma)} \pi_{\Lambda}^{z,Q}(d\gamma_{\Lambda}).$$

Which extreme regime?

Assumption: $\int_0^{+\infty} R^d Q(dR) = \infty$ The existence of a CRCM is obvious: $\pi^{z,Q}$ is a CRCM

$$P(d\gamma_{\Lambda}|\gamma_{\Lambda_c}) = \frac{1}{Z_{\Lambda}(\gamma_{\Lambda^c})} q^{N_{cc}^{\Lambda}(\gamma)} \pi_{\Lambda}^{z,Q}(d\gamma_{\Lambda}).$$

Question: Is there exist different CRCM from $\pi^{z,Q}$?

Result

Theorem (Der.-Houdebert)

For any integer $q \ge 2$, there exists $z_0 > 0$ such that for any $z < z_0$, there exists a CRCM different from $\pi^{z,Q}$.

Result

Theorem (Der.-Houdebert)

For any integer $q \ge 2$, there exists $z_0 > 0$ such that for any $z < z_0$, there exists a CRCM different from $\pi^{z,Q}$.

Conjecture

For any q > 1, there exists $z_1 > 0$ such that for any $z > z_1$, there exists an unique CRCM which is simply $\pi^{z,Q}$.

We proved the conjecture for d=1. The general case is in progress...

-We prove the existence of a WR model with two different colors.

- -We prove the existence of a WR model with two different colors.
- -Let $\Lambda_n = [-n, n]^d$ and P_n the WR model on Λ_n .
- -By standard tightness entropy tool, $P_n \mapsto P$.

- -We prove the existence of a WR model with two different colors.
- -Let $\Lambda_n = [-n, n]^d$ and P_n the WR model on Λ_n .
- -By standard tightness entropy tool, $P_n \mapsto P$.

P(monochromatic) < 1?

- -We prove the existence of a WR model with two different colors.
- -Let $\Lambda_n = [-n, n]^d$ and P_n the WR model on Λ_n .
- -By standard tightness entropy tool, $P_n \mapsto P$.

$$P(\text{monochromatic}) < 1?$$

Specific entropy :
$$I(Q) = \lim_{n \to \infty} \frac{1}{|\Lambda_n|} I(P_{\Lambda_n} | \pi_{\Lambda_n}^{\otimes q})$$

Lemma

For any monochromatic probability measure Q

$$I(Q) \ge (q-1)z$$
.

- -We prove the existence of a WR model with two different colors.
- -Let $\Lambda_n = [-n, n]^d$ and P_n the WR model on Λ_n .
- -By standard tightness entropy tool, $P_n \mapsto P$.

$$P(\text{monochromatic}) < 1$$
?

Specific entropy :
$$I(Q) = \lim_{n \to \infty} \frac{1}{|\Lambda_n|} I(P_{\Lambda_n} | \pi_{\Lambda_n}^{\otimes q})$$

Lemma

For any monochromatic probability measure Q

$$I(Q) \ge (q-1)z$$
.

Lemma

For z small enough

$$I(P) < (q-1)z$$
.