Universal Bounds for Large Determinants from Non–Commutative Hölder Inequalities in Fermionic Constructive QFT

J.–B. Bru¹ W. de Siqueira Pedra²

¹BCAM - University of the Basque Country - Ikerbasque ²University of São Paulo

Based on the following paper:

"Universal Bounds for Large Determinants from Non Commutative Hölder Inequalities in Fermionic Constructive QFT"

(Submitted 2016)

KMS States and Time-Ordered Green Functions

 \bigstar Let $\mathcal U$ be a C^* -algebra, $\tau=\{\tau_t\}_{t\in\mathbb R}$ a group of automorphisms of $\mathcal U$ and $\rho\in\mathcal U^*$ be a (τ,β) -KMS state for some $\beta\in\mathbb R^+$. This means the following:

• Let $\mathfrak{D} \doteq \{z \in \mathbb{C} : 0 < \operatorname{Im} z < \beta\}$. Then, for any $\mathbf{A} = (A_1, A_2) \in \mathcal{U}^2$, there is a continuous and bounded function $F_{\mathbf{A}}$ on $\overline{\mathfrak{D}}$ which is analytic on \mathfrak{D} and such that

$$F_{\mathbf{A}}\left(t\right) = \rho\left(A_{1}\tau_{t}\left(A_{2}\right)\right), \qquad F_{\mathbf{A}}\left(t+i\beta\right) = \rho\left(\tau_{t}\left(A_{2}\right)A_{1}\right), \qquad t \in \mathbb{R}.$$

• More generally, for any $\mathbf{A} = (A_1, \dots, A_n) \in \mathcal{U}^n$ $(n \ge 2)$, there is a continuous and bounded function $F_{\mathbf{A}}$ on $\overline{\mathfrak{D}^{n-1}}$, that is analytic on \mathfrak{D}^{n-1} and satisfies

$$F_{\mathbf{A}}\left(t_{2}-t_{1},t_{3}-t_{2},\ldots,t_{n}-t_{n-1}\right)=\rho\left(au_{t_{1}}\left(A_{1}\right)\cdots au_{t_{n}}\left(A_{n}\right)\right),\qquad t_{1},\ldots,t_{n}\in\mathbb{R}.$$

KMS States and Time-Ordered Green Functions

- \bigstar Let $\mathcal U$ be a C^* -algebra, $\tau=\{\tau_t\}_{t\in\mathbb R}$ a group of automorphisms of $\mathcal U$ and $\rho\in\mathcal U^*$ be a (τ,β) -KMS state for some $\beta\in\mathbb R^+$. This means the following:
 - Let $\mathfrak{D} \doteq \{z \in \mathbb{C} : 0 < \mathrm{Im} z < \beta\}$. Then, for any $\mathbf{A} = (A_1, A_2) \in \mathcal{U}^2$, there is a continuous and bounded function $F_{\mathbf{A}}$ on $\overline{\mathfrak{D}}$ which is analytic on \mathfrak{D} and such that

$$F_{\mathbf{A}}\left(t
ight) =
ho\left(A_{1} au_{t}\left(A_{2}
ight)
ight), \qquad F_{\mathbf{A}}\left(t+ieta
ight) =
ho\left(au_{t}\left(A_{2}
ight)A_{1}
ight), \qquad t \in \mathbb{R}.$$

• More generally, for any $\mathbf{A} = (A_1, \dots, A_n) \in \mathcal{U}^n$ $(n \ge 2)$, there is a continuous and bounded function $F_{\mathbf{A}}$ on $\overline{\mathfrak{D}^{n-1}}$, that is analytic on \mathfrak{D}^{n-1} and satisfies

$$F_{\mathbf{A}}\left(t_{2}-t_{1},t_{3}-t_{2},\ldots,t_{n}-t_{n-1}\right)=
ho\left(au_{t_{1}}\left(A_{1}
ight)\cdots au_{t_{n}}\left(A_{n}
ight)
ight),\qquad t_{1},\ldots,t_{n}\in\mathbb{R}.$$

 \bigstar For $\alpha_1, \ldots, \alpha_n \in \mathbb{R}$ so that $\alpha_j \leq \alpha_{j+1}$, we define the time-ordered Green functions

$$G_{\mathbf{A}}(\alpha_1,\ldots,\alpha_n) \doteq F_{\mathbf{A}}(i(\alpha_2-\alpha_1),\ldots,i(\alpha_n-\alpha_{n-1}))$$
.

KMS States and Time-Ordered Green Functions

- \bigstar Let $\mathcal U$ be a C^* -algebra, $\tau=\{\tau_t\}_{t\in\mathbb R}$ a group of automorphisms of $\mathcal U$ and $\rho\in\mathcal U^*$ be a (τ,β) -KMS state for some $\beta\in\mathbb R^+$. This means the following:
 - Let $\mathfrak{D} \doteq \{z \in \mathbb{C} : 0 < \mathrm{Im} z < \beta\}$. Then, for any $\mathbf{A} = (A_1, A_2) \in \mathcal{U}^2$, there is a continuous and bounded function $F_{\mathbf{A}}$ on $\overline{\mathfrak{D}}$ which is analytic on \mathfrak{D} and such that

$$F_{\mathbf{A}}\left(t
ight) =
ho\left(A_{1} au_{t}\left(A_{2}
ight)
ight), \qquad F_{\mathbf{A}}\left(t+ieta
ight) =
ho\left(au_{t}\left(A_{2}
ight)A_{1}
ight), \qquad t \in \mathbb{R}.$$

• More generally, for any $\mathbf{A} = (A_1, \dots, A_n) \in \mathcal{U}^n$ $(n \ge 2)$, there is a continuous and bounded function $F_{\mathbf{A}}$ on $\overline{\mathfrak{D}^{n-1}}$, that is analytic on \mathfrak{D}^{n-1} and satisfies

$$F_{\mathbf{A}}\left(t_{2}-t_{1},t_{3}-t_{2},\ldots,t_{n}-t_{n-1}\right)=\rho\left(au_{t_{1}}\left(A_{1}\right)\cdots au_{t_{n}}\left(A_{n}\right)\right), \qquad t_{1},\ldots,t_{n}\in\mathbb{R}.$$

 \bigstar For $\alpha_1, \ldots, \alpha_n \in \mathbb{R}$ so that $\alpha_j \leq \alpha_{j+1}$, we define the time-ordered Green functions

$$G_{\mathbf{A}}(\alpha_1,\ldots,\alpha_n) \doteq F_{\mathbf{A}}(i(\alpha_2-\alpha_1),\ldots,i(\alpha_n-\alpha_{n-1}))$$
.

⇒ The aim is to show the existence and uniqueness of KMS states and evaluate (truncated) Green functions.

Example: Fermionic Dynamics on Lattices

- Let $d \in \mathbb{N}$ and \mathcal{U}_0 be the normed *-algebra generated by the identity $\mathbf{1}$ and the creation / annihilation operators $\{a_x^*, a_x\}_{x \in \mathbb{Z}^d}$ satisfying the CAR. This means that elements of \mathcal{U}_0 are finite sums of monomials of $\{a_x^*, a_x\}_{x \in \mathbb{Z}^d}$.
- The CAR C^* -algebra $\mathcal{U} = \operatorname{CAR}(\ell^2(\mathbb{Z}^d))$ of the infinite system is by definition the completion of the normed *-algebra \mathcal{U}_0 .
- Let $[A, B] \doteq AB BA$ and $h, v : \mathbb{R}_0^+ \to \mathbb{R}$ be such that for some fixed $\varsigma, C \in \mathbb{R}^+$,

$$\max\left\{\left|h\left(r\right)\right|,\left|v\left(r\right)\right|\right\} \leq C\left(1+r\right)^{-(d+\varsigma)} \ , \qquad r \in \mathbb{R}_{0}^{+} \ .$$

The fermionic dynamics is given for $\lambda \in \mathbb{R}$ by the group $\tau^{(\lambda)} = \{\tau_t^{(\lambda)}\}_{t \in \mathbb{R}}$ of automorphisms of \mathcal{U} with generator defined by

$$\delta^{(\lambda)}(A) \doteq i \sum_{x,y \in \mathbb{Z}^d} h(|x-y|) \left[a_x^* a_y, A \right] + \lambda v \left(|x-y| \right) \left[a_x^* a_x a_y^* a_y, A \right] , \qquad A \in \mathcal{U}_0 .$$

The case $\lambda = 0$ is the free dynamics and we want to study $G_{\mathbf{A}}^{(\lambda)}$, starting from $G_{\mathbf{A}}^{(0)}$.

Spaces of Antiperiodic Functions on Discrete Tori

• Fix $\beta \in \mathbb{R}^+$, an even integer $n \in 2\mathbb{N}$ and let

$$\mathbb{T}_n \doteq \left\{ -\beta + kn^{-1}\beta : k \in \{1, 2, \dots, 2n\} \right\} \subset (-\beta, \beta]$$

• Pick any separable Hilbert space $\mathfrak h$ and let $\ell_{\rm ap}^2(\mathbb T_n;\mathfrak h)$ be the Hilbert space of functions from $\mathbb T_n$ to $\mathfrak h$ which are *antiperiodic*. That is, for $f\in \ell_{\rm ap}^2(\mathbb T_n;\mathfrak h)$,

$$f(\alpha + \beta) = -f(\alpha)$$
, $\alpha \in \mathbb{T}_n$.

The scalar product on $\ell^2_{\rm ap}(\mathbb{T}_n;\mathfrak{h})$ is then defined to be

$$\langle f_1, f_2 \rangle_{\ell_{\mathrm{ap}}^2(\mathbb{T}_n;\mathfrak{h})} \doteq n^{-1}\beta \sum_{\alpha \in \mathbb{T}_-} \langle f_1(\alpha), f_2(\alpha) \rangle_{\mathfrak{h}} , \qquad f_1, f_2 \in \ell_{\mathrm{ap}}^2(\mathbb{T}_n;\mathfrak{h}) .$$

• Vectors φ of $\mathfrak h$ are viewed as antiperiodic functions $\hat \varphi$ of $\ell^2_{\mathrm{ap}}(\mathbb T_n;\mathfrak h)$ via the definition

$$\hat{\varphi}(\alpha) \doteq (\beta^{-1} n/2) \delta_{0,\alpha} \varphi$$
, $\alpha \in (-\beta, 0] \cap \mathbb{T}_n$.

Spaces of Antiperiodic Functions on Discrete Tori

• Fix $\beta \in \mathbb{R}^+$, an *even* integer $n \in 2\mathbb{N}$ and let

$$\mathbb{T}_n \doteq \left\{ -\beta + kn^{-1}\beta : k \in \{1, 2, \dots, 2n\} \right\} \subset (-\beta, \beta]$$

• Pick any separable Hilbert space $\mathfrak h$ and let $\ell_{\mathrm{ap}}^2(\mathbb T_n;\mathfrak h)$ be the Hilbert space of functions from $\mathbb T_n$ to $\mathfrak h$ which are *antiperiodic*. That is, for $f\in\ell_{\mathrm{ap}}^2(\mathbb T_n;\mathfrak h)$,

$$f(\alpha + \beta) = -f(\alpha)$$
, $\alpha \in \mathbb{T}_n$.

The scalar product on $\ell^2_{\rm ap}(\mathbb{T}_n;\mathfrak{h})$ is then defined to be

$$\langle f_1, f_2 \rangle_{\ell_{\mathrm{ap}}^2(\mathbb{T}_n;\mathfrak{h})} \doteq n^{-1}\beta \sum_{\alpha \in \mathbb{T}_-} \langle f_1(\alpha), f_2(\alpha) \rangle_{\mathfrak{h}} , \qquad f_1, f_2 \in \ell_{\mathrm{ap}}^2(\mathbb{T}_n;\mathfrak{h}) .$$

• Vectors φ of \mathfrak{h} are viewed as antiperiodic functions $\hat{\varphi}$ of $\ell_{\mathrm{ap}}^2(\mathbb{T}_n;\mathfrak{h})$ via the definition

$$\hat{\varphi}(\alpha) \doteq (\beta^{-1} n/2) \delta_{0,\alpha} \varphi$$
, $\alpha \in (-\beta, 0] \cap \mathbb{T}_n$.

Example: $\mathfrak h$ is the one–particle Hilbert space $\ell^2(\mathbb Z^d)$ with ONB $\{\mathfrak e_x\}_{x\in\mathbb Z^d}$ defined by

$$e_x(y) := \delta_{x,y}, \qquad x,y \in \mathbb{Z}^d.$$

Discrete Time Covariance

• Any operator H acting on \mathfrak{h} with domain $\operatorname{dom}(H)$ is viewed as an operator \hat{H} with domain $\ell_{\operatorname{ap}}^2(\mathbb{T}_n;\operatorname{dom}(\hat{H})) \subset \ell_{\operatorname{ap}}^2(\mathbb{T}_n;\mathfrak{h})$ by the definition

$$[\hat{H}f](\alpha) \doteq H(f(\alpha)), \qquad f \in \ell_{\mathrm{ap}}^2(\mathbb{T}_n; \mathrm{dom}(\hat{H})), \ \alpha \in \mathbb{T}_n.$$

• The discrete time derivative $\partial \in \mathcal{B}(\ell^2_{\mathrm{ap}}(\mathbb{T}_n;\mathfrak{h}))$ is the normal invertible operator defined by

$$\partial f\left(\alpha\right) \doteq \beta^{-1} n \left(f\left(\alpha + n^{-1}\beta\right) - f\left(\alpha\right) \right) \;, \qquad f \in \ell^2_{\mathrm{ap}}(\mathbb{T}_n; \mathfrak{h}), \; \alpha \in \mathbb{T}_n \;.$$

• The discrete time covariance is thus defined for any $H = H^*$ to be

$$C_H \doteq -2\left(\partial + \hat{H}\right)^{-1} \in \mathcal{B}(\ell_{\mathrm{ap}}^2(\mathbb{T}_n;\mathfrak{h})) \; .$$

Discrete Time Covariance

• Any operator H acting on \mathfrak{h} with domain $\operatorname{dom}(H)$ is viewed as an operator \hat{H} with domain $\ell_{\operatorname{ap}}^2(\mathbb{T}_n;\operatorname{dom}(\hat{H})) \subset \ell_{\operatorname{ap}}^2(\mathbb{T}_n;\mathfrak{h})$ by the definition

$$[\hat{H}f](\alpha) \doteq H(f(\alpha))$$
, $f \in \ell_{\mathrm{ap}}^2(\mathbb{T}_n; \mathrm{dom}(\hat{H}))$, $\alpha \in \mathbb{T}_n$.

• The discrete time derivative $\partial \in \mathcal{B}(\ell^2_{\mathrm{ap}}(\mathbb{T}_n;\mathfrak{h}))$ is the normal invertible operator defined by

$$\partial f\left(\alpha\right) \doteq \beta^{-1} n \left(f\left(\alpha + n^{-1}\beta\right) - f\left(\alpha\right) \right) \;, \qquad f \in \ell^2_{\mathrm{ap}}(\mathbb{T}_n; \mathfrak{h}), \; \alpha \in \mathbb{T}_n \;.$$

• The discrete time covariance is thus defined for any $H = H^*$ to be

$$C_H \doteq -2 \left(\partial + \hat{H}\right)^{-1} \in \mathcal{B}(\ell_{\mathrm{ap}}^2(\mathbb{T}_n; \mathfrak{h})) \;.$$

Example: $H = H^* \in \mathcal{B}(\ell^2(\mathbb{Z}^d))$ is the one–particle Hamiltonian such that

$$h(|x-y|) = \langle \mathfrak{e}_x, H\mathfrak{e}_y \rangle_{\ell^2(\mathbb{Z}^d)}, \qquad x, y \in \mathbb{Z}^d.$$

Determinant Bounds in Constructive QFT

The convergence of perturbation expansions of all correlation functions (cf. $G_{\mathbf{A}}^{(\lambda)}$) in non–relativistic fermionic constructive QFT at weak coupling λ is ensured if the interaction and the covariance are summable and if certain determinants arising in the expansion can be bounded efficiently:

Definition (Determinant bounds)

Let \mathfrak{h} be a separable Hilbert space with ONB $\{\varphi_i\}_{i\in\mathbb{I}}$, \mathbb{I} being countable. $\gamma_H\in\mathbb{R}^+$ is a **determinant bound** of $H=H^*$ if, for any $\beta\in\mathbb{R}^+$, $n\in2\mathbb{N}$, $m,N\in\mathbb{N}$, $\mathfrak{M}\in\mathrm{Mat}\,(m,\mathbb{R})$ with $\mathfrak{M}\geq0$, and all parameters

$$\{(\alpha_q, i_q, j_q)\}_{q=1}^{2N} \subset \mathbb{T}_n \cap [0, \beta) \times \mathbb{I} \times \{1, \dots, m\} ,$$

the following bound holds true:

$$\left| \det \left[\mathfrak{M}_{j_k,j_{N+l}} \left\langle \varphi_{\mathfrak{i}_{N+l}}, \left(C_H \hat{\varphi}_{\mathfrak{i}_k} \right) \left(\alpha_k - \alpha_{N+l} \right) \right\rangle_{\mathfrak{h}} \right]_{k,l=1}^N \right| \leq \gamma_H^{2N} \prod_{g=1}^{2N} \mathfrak{M}_{j_g,j_g}^{1/2} \ .$$

• For $\lambda \in \mathbb{R}$, $\tau^{(\lambda)} = \{\tau_t^{(\lambda)}\}_{t \in \mathbb{R}}$ is the group of automorphisms of the CAR algebra $\mathcal{U} = \mathrm{CAR}(\ell^2(\mathbb{Z}^d))$ with generator defined by

$$\delta^{(\lambda)}(A) \doteq i \sum_{x,y \in \mathbb{Z}^d} \langle \mathfrak{e}_x, H \mathfrak{e}_y \rangle_{\ell^2(\mathbb{Z}^d)} \left[a_x^* a_y, A \right] + \lambda v \left(|x - y| \right) \left[a_x^* a_x a_y^* a_y, A \right] , \qquad A \in \mathcal{U}_0 .$$

Let

$$\omega_{H} \doteq \limsup_{n \to \infty} \sup_{x \in \mathbb{Z}^{d}} \left\{ n^{-1} \beta \sum_{\vartheta \in \mathbb{T}_{n}} \sum_{y \in \mathbb{Z}^{d}} \left| \left\langle \mathfrak{e}_{y}, \left(C_{H} \hat{\mathfrak{e}}_{x} \right) \left(\vartheta \right) \right\rangle_{\ell^{2}(\mathbb{Z}^{d})} \right| \right\}.$$

• If $\omega_H \gamma_H^2 |\lambda| \ll 1$, then one gets:

• For $\lambda \in \mathbb{R}$, $\tau^{(\lambda)} = \{\tau_t^{(\lambda)}\}_{t \in \mathbb{R}}$ is the group of automorphisms of the CAR algebra $\mathcal{U} = \mathrm{CAR}(\ell^2(\mathbb{Z}^d))$ with generator defined by

$$\delta^{(\lambda)}(A) \doteq i \sum_{x,y \in \mathbb{Z}^d} \langle \mathfrak{e}_x, H \mathfrak{e}_y \rangle_{\ell^2(\mathbb{Z}^d)} \left[a_x^* a_y, A \right] + \lambda v \left(|x - y| \right) \left[a_x^* a_x a_y^* a_y, A \right] , \qquad A \in \mathcal{U}_0 .$$

Let

$$\omega_{H} \doteq \limsup_{n \to \infty} \sup_{x \in \mathbb{Z}^{d}} \left\{ n^{-1} \beta \sum_{\vartheta \in \mathbb{T}_{n}} \sum_{y \in \mathbb{Z}^{d}} \left| \left\langle \mathfrak{e}_{y}, \left(C_{H} \hat{\mathfrak{e}}_{x} \right) \left(\vartheta \right) \right\rangle_{\ell^{2}(\mathbb{Z}^{d})} \right| \right\}.$$

- If $\omega_H \gamma_H^2 |\lambda| \ll 1$, then one gets:
- **1** Existence of a unique *translation invariant* $(\tau^{(\lambda)}, \beta)$ -KMS state.

• For $\lambda \in \mathbb{R}$, $\tau^{(\lambda)} = \{\tau_t^{(\lambda)}\}_{t \in \mathbb{R}}$ is the group of automorphisms of the CAR algebra $\mathcal{U} = \mathrm{CAR}(\ell^2(\mathbb{Z}^d))$ with generator defined by

$$\delta^{(\lambda)}(A) \doteq i \sum_{x,y \in \mathbb{Z}^d} \langle \mathfrak{e}_x, H \mathfrak{e}_y \rangle_{\ell^2(\mathbb{Z}^d)} \left[a_x^* a_y, A \right] + \lambda v \left(|x - y| \right) \left[a_x^* a_x a_y^* a_y, A \right] , \qquad A \in \mathcal{U}_0 .$$

Let

$$\omega_{H} \doteq \limsup_{n \to \infty} \sup_{x \in \mathbb{Z}^{d}} \left\{ n^{-1} \beta \sum_{\vartheta \in \mathbb{T}_{n}} \sum_{y \in \mathbb{Z}^{d}} \left| \left\langle \mathfrak{e}_{y}, \left(C_{H} \hat{\mathfrak{e}}_{x} \right) (\vartheta) \right\rangle_{\ell^{2}(\mathbb{Z}^{d})} \right| \right\}.$$

- If $\omega_H \gamma_H^2 |\lambda| \ll 1$, then one gets:
- **1** Existence of a unique translation invariant $(\tau^{(\lambda)}, \beta)$ -KMS state.
- ② Perturbation expansion of all correlation functions in terms of powers of λ converges absolutely. More precisely, all correlation functions are analytic functions of the coupling λ at $\lambda=0$ with analyticity radius of order $\omega_H^{-1}\gamma_H^{-2}$.

• For $j \in \{1, \ldots, n\}$, let $X_j \doteq (\alpha_j, \nu_j, x_j) \in \mathbb{R} \times \{+, -\} \times \mathbb{Z}^d$. If $\alpha_j \leq \alpha_{j+1}$ then $G^{(n)}(X_1, \ldots, X_n) \doteq G_{\left(a_{x_1}^{\nu_1}, \ldots, a_{x_n}^{\nu_n}\right)}(\alpha_1, \ldots, \alpha_n) \quad \text{with} \quad a_x^+ \doteq a_x^* \text{ and } a_x^- \doteq a_x .$

 $G^{(n)}$ is extended to all $\alpha_j \in \mathbb{R}$ so that it is antisymmetric w.r.t. permutations $\pi \in \mathcal{S}_n$ of its n arguments and periodic with period 2β w.r.t. to each α_i .

• Truncated Green functions $G_T^{(n)}(X_1,\ldots,X_n)$ are recursively defined by

$$\sum_{k=1}^{n} \sum_{\pi \in \mathcal{S}_{n}} \frac{(-1)^{\pi}}{k!(n-k)!} G_{T}^{(k)} \left(X_{\pi(1)}, \dots, X_{\pi(k)} \right) G_{T}^{(n-k)} \left(X_{\pi(k+1)}, \dots, X_{\pi(n-k)} \right)$$

$$= G^{(n)} \left(X_{1}, \dots, X_{n} \right) .$$

Theorem (Pedra, 2005 and many others)

For $\omega_H \gamma_H^2 |\lambda|$ sufficiently small, there are a unique translation invariant $(\tau^{(\lambda)}, \beta)$ –KMS state, constants C_1, C_2, \ldots and a radius $R = \mathcal{O}(\omega_H^{-1} \gamma_H^{-2}) > 0$ so that

$$\left|\frac{\partial^k}{\partial \lambda^k} G_T^{(n,\lambda)}\left(X_1,\ldots,X_n\right)\right| \leq C_n k! R^{-k}, \quad k \in \mathbb{N}_0, \ n \in \mathbb{N}, \ X_1,\ldots,X_n \in \mathbb{R} \times \{+,-\} \times \mathbb{Z}^d.$$

Gram Bound for Determinants

Lemma (Gram bound)

Let $\mathcal H$ be an Hilbert space and $C\in\mathcal B(\mathcal H)$. Then, for any $N\in\mathbb N$ and $u_1,\dots,u_{2N}\in\mathcal H$,

$$\left| \det \left[\left\langle u_{N+I}, C u_k \right\rangle_{\mathcal{H}} \right]_{k,I=1}^N \right| \leq \left\| C \right\|_{\mathcal{B}(\mathcal{H})}^N \left\| u_1 \right\|_{\mathcal{H}} \cdots \left\| u_{2N} \right\|_{\mathcal{H}} \ .$$

Therefore, for any $\beta \in \mathbb{R}^+$, $n \in 2\mathbb{N}$, $m, N \in \mathbb{N}$, $\mathfrak{M} \in \mathrm{Mat}(m, \mathbb{R})$ with $\mathfrak{M} \geq 0$, and $\{(\alpha_q, \mathfrak{i}_q, j_q)\}_{q=1}^{2N} \subset \mathbb{T}_n \cap [0, \beta) \times \mathbb{I} \times \{1, \dots, m\}$,

the following bound holds true:

$$\left|\det\left[\mathfrak{M}_{j_{k},j_{N+l}}\left\langle \varphi_{\mathfrak{i}_{N+l}},\left(C_{H}\hat{\varphi}_{\mathfrak{i}_{k}}\right)\left(\alpha_{k}-\alpha_{N+l}\right)\right\rangle_{\mathfrak{h}}\right]_{k,l=1}^{N}\right|\leq \|C_{H}\|_{\mathcal{B}\left(\ell_{\mathrm{ap}}^{2}\left(\mathbb{T}_{n};\mathfrak{h}\right)\right)}^{2N}\prod_{q=1}^{2N}\left\|\hat{\varphi}_{\mathfrak{i}_{q}}\right\|_{\ell_{\mathrm{ap}}^{2}\left(\mathbb{T}_{n};\mathfrak{h}\right)}\mathfrak{M}_{j_{q},j_{q}}^{1/2}$$

Gram Bound for Determinants

Lemma (Gram bound)

Let $\mathcal H$ be an Hilbert space and $C\in\mathcal B(\mathcal H)$. Then, for any $N\in\mathbb N$ and $u_1,\dots,u_{2N}\in\mathcal H$,

$$\left|\det\left[\left\langle u_{N+I},Cu_{k}\right\rangle _{\mathcal{H}}\right]_{k,l=1}^{N}\right|\leq\left\|C\right\|_{\mathcal{B}(\mathcal{H})}^{N}\left\|u_{1}\right\|_{\mathcal{H}}\cdot\cdot\cdot\left\|u_{2N}\right\|_{\mathcal{H}}\ .$$

Therefore, for any $\beta \in \mathbb{R}^+$, $n \in 2\mathbb{N}$, $m, N \in \mathbb{N}$, $\mathfrak{M} \in \mathrm{Mat}(m, \mathbb{R})$ with $\mathfrak{M} \geq 0$, and $\{(\alpha_q, \mathfrak{i}_q, j_q)\}_{q=1}^{2N} \subset \mathbb{T}_n \cap [0, \beta) \times \mathbb{I} \times \{1, \dots, m\} ,$

the following bound holds true:

$$\left|\det\left[\mathfrak{M}_{j_{k},j_{N+l}}\left\langle \varphi_{\mathfrak{i}_{N+l}},\left(\mathcal{C}_{H}\hat{\varphi}_{\mathfrak{i}_{k}}\right)\left(\alpha_{k}-\alpha_{N+l}\right)\right\rangle_{\mathfrak{h}}\right]_{k,l=1}^{N}\right|\leq \|\mathcal{C}_{H}\|_{\mathcal{B}\left(\ell_{\mathrm{ap}}^{2}\left(\mathbb{T}_{n};\mathfrak{h}\right)\right)}^{2N}\prod_{q=1}^{2N}\left\|\hat{\varphi}_{\mathfrak{i}_{q}}\right\|_{\ell_{\mathrm{ap}}^{2}\left(\mathbb{T}_{n};\mathfrak{h}\right)}\mathfrak{M}_{j_{q},j_{q}}^{1/2}$$

Problem: In general, the norm of C_H diverges, as $n \to \infty$. This problem appears already for bounded $H \in \mathcal{B}(\mathfrak{h})$ when $0 \in \operatorname{spec}(H)$. In this case,

$$\left\| \mathit{C}_{\mathit{H}} \right\|_{\mathcal{B}(\ell_{\mathrm{ap}}^{2}(\mathbb{T}_{n};\mathfrak{h}))}^{1/2} = \mathcal{O}\left(\sqrt{\mathit{n}}\right) \qquad \text{and} \qquad \left\| \hat{\varphi}_{i_{q}} \right\|_{\ell_{\mathrm{ap}}^{2}(\mathbb{T}_{n};\mathfrak{h})} = \mathcal{O}\left(\sqrt{\mathit{n}}\right) \; .$$

Gram Bound and Multiscale Analyses

One uses the *Gram bound* for some regularized covariances $C_H \hat{\kappa}_L(\hat{H}, i\partial)$ at every $L \in \mathbb{N}$. Here, for $L \in \mathbb{N}$, $\hat{\kappa}_L : \mathbb{R}^2 \to [0, 1]$ defines a family of measurable functions so that

$$\sum_{L=1}^{\infty} \hat{\kappa}_L(x,y) = \mathbf{1} , \qquad x,y \in \mathbb{R} .$$

This decomposition can be chosen such that there are constants $\hat{\gamma}_L \in \mathbb{R}^+$, $L \in \mathbb{N}$, which at least do *not* depend on $n \in 2\mathbb{N}$ and meanwhile satisfy

$$\left| \det \left[\mathfrak{M}_{j_k,j_{N+l}} \left\langle \varphi_{\mathfrak{i}_{N+l}}, \left(C_H \hat{\kappa}_L(\hat{H}, i\partial) \hat{\varphi}_{\mathfrak{i}_k} \right) (\alpha_k - \alpha_{N+l}) \right\rangle_{\mathfrak{h}} \right]_{k,l=1}^N \right| \leq \hat{\gamma}_L^{2N} \prod_{q=1}^{2N} \mathfrak{M}_{j_q,j_q}^{1/2}.$$

See, e.g., [Benfatto-Gallavotti-Procacci-Scoppola, '94], [Giuliani-Mastropietro, '10], [Giuliani-Mastropietro-Porta, '16] and in many others works.

Gram Bound and Multiscale Analyses

One uses the *Gram bound* for some regularized covariances $C_H \hat{\kappa}_L(\hat{H}, i\partial)$ at every $L \in \mathbb{N}$. Here, for $L \in \mathbb{N}$, $\hat{\kappa}_L : \mathbb{R}^2 \to [0, 1]$ defines a family of measurable functions so that

$$\sum_{L=1}^{\infty} \hat{\kappa}_L(x,y) = \mathbf{1} , \qquad x,y \in \mathbb{R} .$$

This decomposition can be chosen such that there are constants $\hat{\gamma}_L \in \mathbb{R}^+$, $L \in \mathbb{N}$, which at least do *not* depend on $n \in 2\mathbb{N}$ and meanwhile satisfy

$$\left| \det \left[\mathfrak{M}_{j_k,j_{N+l}} \left\langle \varphi_{\mathfrak{i}_{N+l}}, \left(C_H \hat{\kappa}_L(\hat{H}, i\partial) \hat{\varphi}_{\mathfrak{i}_k} \right) (\alpha_k - \alpha_{N+l}) \right\rangle_{\mathfrak{h}} \right]_{k,l=1}^N \right| \leq \hat{\gamma}_L^{2N} \prod_{q=1}^{2N} \mathfrak{M}_{j_q,j_q}^{1/2}.$$

See, e.g., [Benfatto-Gallavotti-Procacci-Scoppola, '94], [Giuliani-Mastropietro, '10], [Giuliani-Mastropietro-Porta, '16] and in many others works.

Observation: [Pedra-Salmhofer, '08] shows that this multiscale analysis for the so-called Matsubara UV problem is *not* necessary, by proving a new bound for determinants that generalizes the original Gram bound. Avoiding this kind of procedure brings various technical benefits.

• We also show that the UV regularization of the Matsubara frequency is not necessary, but, in contrast with [Pedra-Salmhofer, '08], the given covariance does *not* need to be written as a chronological sum to obtain determinant bounds.

- We also show that the UV regularization of the Matsubara frequency is not necessary, but, in contrast with [Pedra-Salmhofer, '08], the given covariance does not need to be written as a chronological sum to obtain determinant bounds.
- Our estimates are sharp and hold true for all (possibly unbounded, the latter not being limited to semibounded) one-particle Hamiltonians H:

- We also show that the UV regularization of the Matsubara frequency is not necessary, but, in contrast with [Pedra-Salmhofer, '08], the given covariance does not need to be written as a chronological sum to obtain determinant bounds.
- Our estimates are *sharp* and hold true for *all* (possibly unbounded, the latter not being limited to semibounded) one–particle Hamiltonians *H*:

Theorem (B-Pedra, '16)

 $\mathfrak{x} \doteq \sup \{\inf \gamma_H : H = H^* \text{ acting on a separable Hilbert space } \mathfrak{h} \text{ with ONB } \{\varphi_i\}_{i \in \mathbb{I}}\},$ named the universal determinant bound, is equal to $\mathfrak{x} = 1$.

- We also show that the UV regularization of the Matsubara frequency is not necessary, but, in contrast with [Pedra-Salmhofer, '08], the given covariance does not need to be written as a chronological sum to obtain determinant bounds.
- Our estimates are sharp and hold true for all (possibly unbounded, the latter not being limited to semibounded) one-particle Hamiltonians H:

Theorem (B-Pedra, '16)

 $\mathfrak{x} \doteq \sup \{\inf \gamma_H : H = H^* \text{ acting on a separable Hilbert space } \mathfrak{h} \text{ with ONB } \{\varphi_{\mathfrak{i}}\}_{\mathfrak{i} \in \mathbb{I}} \},$ named the universal determinant bound, is equal to $\mathfrak{x} = 1$.

In other words, for any $\beta \in \mathbb{R}^+$, $n \in 2\mathbb{N}$, $m, N \in \mathbb{N}$, $\mathfrak{M} \in \mathrm{Mat}\,(m,\mathbb{R})$ with $\mathfrak{M} \geq 0$, and

$$\{(\alpha_q, i_q, j_q)\}_{q=1}^{2N} \subset \mathbb{T}_n \cap [0, \beta) \times \mathbb{I} \times \{1, \dots, m\}$$
,

the following bound holds true:

$$\left|\det\left[\mathfrak{M}_{j_{k},j_{N+l}}\left\langle \varphi_{N+l},\left(C_{H}\hat{\varphi}_{k}\right)\left(\alpha_{k}-\alpha_{N+l}\right)\right\rangle _{\mathfrak{h}}\right]_{k,l=1}^{N}\right|\leq\prod_{q=1}^{2N}\left\|\varphi_{q}\right\|_{\mathfrak{h}}\mathfrak{M}_{j_{q},j_{q}}^{1/2}.$$

- We also show that the UV regularization of the Matsubara frequency is not necessary, but, in contrast with [Pedra-Salmhofer, '08], the given covariance does not need to be written as a chronological sum to obtain determinant bounds.
- Our estimates are sharp and hold true for all (possibly unbounded, the latter not being limited to semibounded) one-particle Hamiltonians H:

Theorem (B-Pedra, '16)

 $\mathfrak{x} \doteq \sup \{\inf \gamma_H : H = H^* \text{ acting on a separable Hilbert space } \mathfrak{h} \text{ with ONB } \{\varphi_i\}_{i \in \mathbb{I}} \},$ named the universal determinant bound, is equal to $\mathfrak{x} = 1$.

- [Pedra-Salmhofer, '08] gives $\gamma_H = 2$ for the class of *bounded* operators H it applies.
- Thus, the convergence of perturbation series at $\lambda=0$ of any non–relativistic fermionic QFT (possibly in the continuum) is *only* ensured by the smallness of

$$\omega_{H} \doteq \limsup_{n \to \infty} \sup_{x \in \mathbb{Z}^{d}} \left\{ n^{-1} \beta \sum_{\vartheta \in \mathbb{T}_{n}} \sum_{y \in \mathbb{Z}^{d}} \left| \left\langle \mathfrak{e}_{y}, \left(C_{H} \hat{\mathfrak{e}}_{x} \right) (\vartheta) \right\rangle_{\ell^{2}(\mathbb{Z}^{d})} \right| \right\}.$$

Heuristic of the Proof: Quasi-Free States

Let $\mathcal H$ be any (separable) Hilbert space and $\mathcal U=\operatorname{CAR}(\mathcal H)$ the C^* -algebra generated by the unit $\mathbf 1$ and the family $\{a(\Psi)\}_{\Psi\in\mathcal H}$ of elements satisfying the CAR.

Definition (Quasi-free states with one-particle Hamiltonian $\mathrm{H}=\mathrm{H}^*$)

Quasi-free states are positive linear functionals $\rho \in \operatorname{CAR}(\mathcal{H})^*$ such that $\rho(\mathbf{1}) = 1$ and, for all $N \in \mathbb{N}$ and $\Psi_1, \dots, \Psi_{2N} \in \mathcal{H}$,

$$\rho\left(a^+(\Psi_1)\cdots a^+(\Psi_N)a(\Psi_{2N})\cdots a(\Psi_{N+1})\right)=\det\left[\left\langle \Psi_k,\frac{1}{1+\mathrm{e}^H}\Psi_{N+l}\right\rangle_{\mathcal{H}}\right]_{k,l=1}^N.$$

Heuristic of the Proof: Quasi-Free States

Let $\mathcal H$ be any (separable) Hilbert space and $\mathcal U=\operatorname{CAR}(\mathcal H)$ the C^* -algebra generated by the unit $\mathbf 1$ and the family $\{a(\Psi)\}_{\Psi\in\mathcal H}$ of elements satisfying the CAR.

Definition (Quasi-free states with one-particle Hamiltonian $H = H^*$)

Quasi–free states are positive linear functionals $\rho \in \mathrm{CAR}(\mathcal{H})^*$ such that $\rho(\mathbf{1}) = 1$ and, for all $N \in \mathbb{N}$ and $\Psi_1, \ldots, \Psi_{2N} \in \mathcal{H}$,

$$\rho\left(a^+(\Psi_1)\cdots a^+(\Psi_N)a(\Psi_{2N})\cdots a(\Psi_{N+1})\right) = \det\left[\left\langle \Psi_k, \frac{1}{1+\mathrm{e}^H}\Psi_{N+l}\right\rangle_{\mathcal{H}}\right]_{k,l=1}^N \,.$$

Compare with the determinant we have to estimate:

$$\det\left[\mathfrak{M}_{j_k,j_{N+l}}\left\langle\varphi_{N+l},\left(C_H\hat{\varphi}_k\right)\left(\alpha_k-\alpha_{N+l}\right)\right\rangle_{\mathfrak{h}}\right]_{k,l=1}^{N}.$$

Actually, we construct a one-particle Hamiltonian $H=H^*\in \mathcal{B}(\mathcal{H})$ such that

$$\mathfrak{M}_{j_k,j_{N+l}} \left\langle \varphi_{N+l}, \left(\textit{C}_{\textit{H}} \hat{\varphi}_k \right) \left(\alpha_k - \alpha_{N+l} \right) \right\rangle_{\mathfrak{h}} = \pm \left\langle \Psi_k, \frac{1}{1 + \mathrm{e}^H} \Psi_{N+l} \right\rangle_{\mathcal{H}} = \pm \rho \left(\textit{a}^+(\Psi_k) \textit{a}(\Psi_{N+l}) \right).$$

13 / 16

Heuristic of the Proof: Quasi-Free States

To simplify, fix $n \in 2\mathbb{N}$, $\beta = 1 = \mathfrak{M} \in \operatorname{Mat}(1, \mathbb{R})$, and the one-particle hamiltonian $H = H^* \in \mathcal{B}(\mathfrak{h})$.

Lemma

For $m \in \mathbb{N}$, $\alpha_1, \alpha_2 \in \mathbb{T}_n \cap [0,1)$, and $\varphi_1, \varphi_2 \in \mathfrak{h}$, there are $\psi_1, \psi_2 \in \mathfrak{h}$ with $\|\psi_{1,2}\|_{\mathfrak{h}} \leq \|\varphi_{1,2}\|_{\mathfrak{h}}$, quasi-free states ρ_{ν} , $\nu \in \mathbb{R}^+$, with one-particle hamiltonian

$$\mathrm{H}_{
u} \simeq -n \ln \left| 1 - n^{-1} H \right|, \quad i.e., \quad \mathrm{e}^{\mp \mathrm{H}_{
u}} = \left(1 - n^{-1} H \right)^{\pm n} \simeq \mathrm{e}^{\mp H} + o \left(1 \right),$$

such that for $\alpha_1 \leq \alpha_2$,

$$\left\langle \varphi_2, \left(\textit{C}_{\textit{H}} \hat{\varphi}_1 \right) \left(\alpha_1 - \alpha_2 \right) \right\rangle_{\mathfrak{h}} = \lim_{\nu \to \infty} \rho_{\nu} \left(\textit{a}^+ \left(\left(e^{-\alpha_1 H_{\nu}} \psi_1 \right) \right) \textit{a} \left(\left(e^{(\alpha_2 + \textit{n}^{-1}) H_{\nu}} \psi_2 \right) \right) \right)$$

while for $\alpha_1 > \alpha_2$,

$$\left\langle \varphi_{2},\left(\mathit{C}_{\mathit{H}}\hat{\varphi}_{1}\right)\left(\alpha_{1}-\alpha_{2}\right)\right\rangle _{\mathfrak{h}}=-\lim_{\nu\rightarrow\infty}\rho_{\nu}\left(\mathit{a}\left((\mathrm{e}^{(\alpha_{2}+\mathit{n}^{-1})\mathrm{H}_{\nu}}\psi_{2})\right)\mathit{a}^{+}\left((\mathrm{e}^{-\alpha_{1}\mathrm{H}_{\nu}}\psi_{1})\right)\right).$$

Heuristic of the Proof: Hölder Inequalities

• Assume that \mathfrak{h} is a finite dimensional Hilbert space. Then, $CAR(\mathfrak{h}) \sim \mathcal{B}(\wedge \mathfrak{h})$ with $\wedge \mathfrak{h}$ being the fermionic Fock space and, for $\nu \in \mathbb{R}^+$,

$$\rho_{\nu}\left(\textit{A}\right) \doteq \mathrm{Tr}_{\wedge \mathfrak{h}}\left(\textit{A}\mathrm{D}_{\nu}\right) \doteq \mathrm{Tr}_{\wedge \mathfrak{h}}\left(\textit{A}\mathrm{e}^{-\mathrm{H}_{\nu}}\right) \;, \qquad \textit{A} \in \mathcal{B}(\wedge \mathfrak{h}) \;.$$

• For $q \in \{1, \dots, 2N\}$ and $\alpha_q \in \mathbb{T}_n \cap [0, 1)$ such that $\vartheta_q \doteq \alpha_q - \alpha_{q-1} \geq 0$ for $q \geq 2$,

$$\left|\det\left[\left\langle \varphi_{N+l},\left(\textit{\textit{C}}_{\textit{H}}\hat{\varphi}_{\textit{k}}\right)\left(\alpha_{\textit{k}}-\alpha_{N+l}\right)\right\rangle _{\mathfrak{h}}\right]_{\textit{k},l=1}^{\textit{N}}\right|\simeq\lim_{\nu\to\infty}\left|\operatorname{Tr}_{\wedge\mathfrak{h}}\left(\textbf{X}_{\nu}\right)\right|\leq\lim_{\nu\to\infty}\left\|\textbf{X}_{\nu}\right\|_{1}$$

with

$$\mathbf{X}_{\nu} \doteq \mathrm{D}_{\nu}^{\vartheta_{2}} \mathsf{a}^{+} \left(\psi_{2} \right) \cdots \mathsf{a}^{+} \left(\psi_{N} \right) \mathrm{D}_{\nu}^{\vartheta_{N+1}} \mathsf{a} \left(\psi_{N+1} \right) \cdots \mathrm{D}_{\nu}^{\vartheta_{2N}} \mathsf{a} \left(\psi_{2N} \right) \mathrm{D}_{\nu}^{1 - (\vartheta_{2} + \cdots + \vartheta_{2N})} \mathsf{a}^{+} \left(\psi_{1} \right)$$

and

$$\left\|A\right\|_{s}\doteq\left(\operatorname{Tr}_{\wedge\mathfrak{h}}\left(\left|A\right|^{s}
ight)\right)^{\frac{1}{s}}\ ,\qquad A\in\mathcal{B}(\wedge\mathfrak{h})\ ,\ s\geq1\ .$$

Heuristic of the Proof: Hölder Inequalities

• Hölder inequalities for Schatten norms: For $n \in \mathbb{N}$, $r, s_1, \ldots, s_n \in [1, \infty]$ such that $\sum_{j=1}^n 1/s_j = 1/r$, and all operators $A_1, \ldots, A_n \in \mathcal{B}(\wedge \mathfrak{h})$,

$$\|A_1 \cdots A_n\|_r \leq \prod_{j=1}^n \|A_j\|_{s_j}$$
.

• Then, using Hölder inequalities for r = 1,

$$\begin{split} \left\| \mathbf{X}_{\nu} \right\|_{1} &= \left\| \mathbf{D}_{\nu}^{\vartheta_{2}} \mathbf{a}^{+} \left(\psi_{2} \right) \cdots \mathbf{D}_{\nu}^{\vartheta_{2N}} \mathbf{a} \left(\psi_{2N} \right) \mathbf{D}_{\nu}^{1 - (\vartheta_{2} + \dots + \vartheta_{2N})} \mathbf{a}^{+} \left(\psi_{1} \right) \right\|_{1} \\ &\leq \left\| \mathbf{D}_{\nu}^{\vartheta_{2}} \right\|_{\frac{1}{\vartheta_{2}}} \cdots \left\| \mathbf{D}_{\nu}^{\vartheta_{2N}} \right\|_{\frac{1}{\vartheta_{2N}}} \left\| \mathbf{D}_{\nu}^{1 - (\vartheta_{2} + \dots + \vartheta_{2N})} \right\|_{\frac{1}{1 - (\vartheta_{2} + \dots + \vartheta_{2N})}} \prod_{q=1}^{p-1} \left\| \mathbf{a} \left(\psi_{q} \right) \right\|_{\infty} . \end{split}$$

• Since $\|D_{\nu}\|_1 = 1$ and for $q \in \{1, \dots, 2N\}$,

$$\|a(\psi_q)\|_{\infty} = \|a(\psi_q)\|_{\operatorname{CAR}(\mathfrak{h})} = \|\psi_q\|_{\mathfrak{h}} \le \|\varphi_q\|_{\mathfrak{h}},$$

it follows that

$$\left|\det\left[\left\langle \varphi_{N+l},\left(\textit{C}_{\textit{H}}\hat{\varphi}_{\textit{k}}\right)\left(\alpha_{\textit{k}}-\alpha_{N+l}\right)\right\rangle _{\mathfrak{h}}\right]_{\textit{k},l=1}^{\textit{N}}\right|\leq\lim_{\nu\to\infty}\left\|\boldsymbol{\mathsf{X}}_{\nu}\right\|_{1}\leq\prod_{\textit{q}=1}^{2\textit{N}}\left\|\varphi_{\textit{q}}\right\|_{\mathfrak{h}}.$$