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Repeated interaction of a two-level atomsbeam with a one-
mode photon cavity is considered. For stationary beam of ran-
domly excited atoms this state is not stationary. For a leaky
cavity (Kossakowski-Lindblad dissipation) the corresponding open
system vields non-equilibrium steady state.
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1. Motivation: One-Atom Maser

e Two-Level Atom H,4, ¢ Photon-Field Hy o Interaction: V

1



IX International Conference on MathPhys, Yerevan 2012

2. Beam of Atoms and Cavity

.'G.'...-Qti@l

Repeated interaction scheme

H= Hcavity ® Hbeam Hbeam = ® Hatom n
n>1

H, = Hjc aCting on Hcavity ® Hatom n

e Regular Beam
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3. Mathematical Model: Non-Leaky Cavity

e A system: photon cavity + beam of two-level atoms. The
Hilbert space of the system is a tensor product, H .= Hc & Hy,
of boson Hilbert space of cavity Ho and the Hilbert space of
two-level atoms H, := ®,>1H4,,, where H, = C? for n > 1.

e The Hamiltonian of the one-mode cavity is: Ho =€ b*b ® I,
where the photon (boson) creation-annihilation operators verify:
[b,b*] = I and [b,b] = [b*,b*] = O.

e The Hamiltonian for the individual n-th atom is : Hy =
I ® E ny, Where

1
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e [ime-dependent interaction between the n-th atom of the
beam and the cavity:

Wn(t) = X[tn—1)rnr) A 10 @ (0F 4+ b)) , X[ap)(t € la, b)) =1.

e For a tuned homogeneous beam, exactly one atom always
present in the cavity.

e [ he Hamiltonian of the model: the cavity + the beam of
atoms

H(t):=Ho+ ) (Ha,+Wa(t)) =

n>1

eb*b @ I + Z I Enn + Z X[(n—1)7,n7) () (Ann @ (b* 4+ b)).

n>1 n>1
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4. Hamiltonian Dynamics of State: Chain Rule

e Fort € [(n—1)r,nT) =: An(7r), only the n-th atom of the
beam interacts with the cavity: a tuned case.
e The evolution is defined by H(t)‘A oy = HnH 1@ Sy Bajay,

where

Hy=e¢b*vQI+ITIQFE nn+ X\ (b*+b)@nn .
e Since xa, () (t <0) =0, the initial density-matrix state :

p(t = —0) := po ® p4 corresponds to the non-interacting system.
e Suppose (for simplicity) that the initial product-state of
atoms py ‘= Qi>1pr coOmmutes with n, for any n. For ex-

ample, all atoms are in the Gibbs equilibrium state:
pr. = e PEM /(14 e PEY .
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e The Hamiltonian dynamics of the state is defined by:

Op(t) = —i[H (1), p(t)] =: L(t)p(¢) .

e Let L, ;= L(t), t € [(n—1)r,nT). Then for the piece-wise
constant 1st atom-evolution, when n = 1, one obtains:

p(t) = e ™M1 (pe @ pp=1)e™t = e1p(t = 0) .

e T he chain of atoms in the beam implies the chain rule for the
Hamiltonian dynamics. When n — 1 atoms are passed through
the cavity and the n-th is still inside, one gets:

n
p(t) = e’tmemn-1_ e™2e™ 1 (po @ Q) pp)
k=1

herete[(n—1)r,nt) andt=((n—-1)7+v, 0<v<T.
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5. Cavity Evolution and Pumping

e [ he cavity density matrix state ptC at the moment: t =nr, is
the partial trace over the first n atoms of the beam:

n
. Ln Ly .rL _
pld = Try p(n) = Try  [e77m..eT2e™ 1 (pc ® Q) pp)] =

k=1
L L Lo 7L nl
TrHAn{eT ”[TI’HAn_l...TI’HAleT n=1_.e""2e" "1 (po ® ® pr) ® pnl}
k=1
~1 ~1
= Try, [ (o™ @ )] =1 L [pg V7] = Lpc]

e To study the (reduced) evolution of the state p’é we first look
on the variation in the cavity of the mean photon number:

N(t) 1= Try,,(bb pp) .
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e Theorem 1. Let po be a gauge-invariant state. Then for a
stationary beam with p := Tr(n, p4,), the mean photon num-
ber in the cavity for t = nt is
2 2

N(t) = N(O) +np(1l—0p) %(1 — coser) + p? %(1 — COSneT).
e Remark 1 (Pumping). Theorem implies that only the beam
of randomly exited atoms (0 < p < 1) is able to produce un-
limited pumping of the cavity, under the following condition:
{er = 27mm :m € NUO} (detuning).

e When all atoms are exited (p = 1), then the cavity state is os-
cillating (Rabi oscillations). Whereas the beam of non-exciting
atoms (p = 0) keeps N(t) = N(0).
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6. Energy Production

e Energy variation between moments ¢34, and t; = (k—1)7 +v:

AE(tra1,tk) = Try er, (p(tr1) H(t k1)) — Tryom (p(tg) H(t))

2)\2
—{p(l —p) [1 —cos(re)] +» [cos((k — 1)7e) — cos(kre)]}

e Theorem 2. The interaction-jump external work for [t1,t,41):

2)\2
AE(tpq1,t1) = —{np(l —p)[1 — cos(re)] + p?[1 — cosnre]} .

e [ he Cavity energy-variation fort=0 -t =nr+v :

2
Aé’c(t) = e(N(t)—N(0)) = &{np(l —p) (1—cos 6’7’)—|—p (1—cosner)}.

9
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7. Entropy Production

e Relative Entropy of the normal state p with respect to the
normal state pg can be defined as:

Ent(plpg) == Try(pinp —plnpg) >0 .
e Entropy Production is then naturally to define by

AS(1) = Ent(p(8)]p(t = 0)) = Tragar, (p(t) I p;g)m} .

e Suppose that all atoms of the beam are in the Gibbs state with
temperature 1/6 :

pa(B) = gl PAn(ﬁ) ; PAn(B) L= W :

10
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e Then (in general) the Relative Entropy variation for t =0 —
t =nt + v is equal to

AS(t) = Tryflec —p¢" 1 Inpc} +

S Tracory {00 7 @ p) ™I @ Hy)e ™ — 10 Hy ]}
k=1

e Since for our model [Hy, Hy | = 0, the last term vanishes and
for initial Gibbs cavity state with temperature 1/6

AS(t) = TrHC{[PC o 1 Inpc} =
Try {loc — PE1(—Beb*d —In(1 — e )} =
2
I6; & {np(l—p) (1 —coser) + p? (1 — cosner)} .

11
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e Let denote by AEC(t) = e(N(t) — N(0)) the energy variation of
the thermal cavity, which is due to the photon number variation,
see Theorem 1.
e [ hen relation:

2\ 5
AS(t) = p — {np(l —p) (1 —coser) 4+ p“ (1 — cosner)}

B e(N(t) —N(0)) ,

expresses the 2nd Law of Thermodynamics:
AS(t) = BAEC (L) |

for pumping of the initially thermal cavity.

12
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8. Open Systems and Reduced Dynamics

e Let {S,9Hg} be an Open Quantum System interacting with the
external Reservoir {R,$Hr}. Then:

a. Hg®Ngr is the Hilbert space of the total system.

b. Hiot =: HgQI+I1R®Hrp+ Hgpr is the total system Hamiltonian.
c. The initial state of the total system is =0 := wg®wp and
evolution: w! = exp (—itHo)(wg @ wr) exp (itHot).

d. Evolution of the state for the open system {S, g} is the
mapping: wg — Atwg := Trg (w") =: p% (reduced dynamics) .
NB [Kraus-Kossakowski] Form of the reduced dynamical map:

Ar i ply Arpl =" Ca(t,7) Wa ply Wi = o5,
(8

for a family of bounded operators W, € B(Hg) and a function
Ca(t, 7) > 0 satisfying the condition >, Cu(t,7) WiW, = 1.

13
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e T he Heisenberg picture defines a dual reduced dynamics /\;f:

ps(A) = Trg (Atwg)A) =: Trg (wg AfA) , A€ B(Hg).

NB Dynamics A} is unity-preserving positive map on B(9g).
(i) A (canonical) form of the dual reduced dynamical map:

NE(AFA) = Calt, ) WENA W, NET=1, AcB(Hg), -
(8%
(i) The map A} is completely positive, i.e. the operators:

ADn =N @ 1) : B(H5@C") — B(Hs@C")

are positive for alln=1,2,..., and .
e Generally the function t — A; (or mapping t — Af) satisfies the
Bogoliubov hierarchy of integro-differential equations.

14
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9. Open Systems and Quantum Dynamical Semigroups

e Markov Approximation < Quantum Evolution Operators:
a. {/\t 0} >0 reduced dynamics (for time-dependent Hgp(t)).

b. At sNs0 = Nips,0 Markov property = cocycle property.
C. pS(A) = Trg, ((/\tows)A) is a continuous function of t > 0
for any density matrlx wg € TrClass($Hg) and A € B(Hg).

e Operator family {p = Nt owgs}tt>0 is solution of the quantum
Markovian master equation with (unbounded) generator L(t):
d

Lol = L)l , A= I—I—/ drL(T) Ar.s.

dt
e Euler formula for the Propagator (Evolution Operator):
1 —1
_ t— s t— s
Nt s = ﬂl[)noo kH [I — L(s+k )] :
=m

15
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e For time-independent Hqgp and Markov Approximation of com-
pletely positive evolution < Quantum Semigroup

a. Markov completely positive maps: A¢As = Ny .

b. {/\t — etL}t>O semigroup of reduced quantum evolution with
generator L.

c. pg(A) = Trg ((Atwg)A) is a continuous function of ¢ > 0
for any density matrix wg € TrClass($Hg) and A € B(Hg).

e Operator family {pfg = Ntwg}i>o is solution of the quantum
Markovian master equation with (unbounded) generator L:

d .
—ps=1Lps, Nep=_lim [I/(I—tL/m)]"p .

dt m—00

16
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e [Kossakowski-Lindblad-Davies] A standard form of Quantum
Semigroup generators L and L* is defined by a family of oper-
ators {Vo € B(Hg)}a with X, VaVE € B(Hg):

1
Lp = —i[Hg,pl + =3 0a{[Vap, Vil + [Va, pVZ1}
2

1
LA = ilHs, Al + 5 3 0a{ValA, Vol + [V, AlVa}

e Example: Open Leaking/Pumping Cavity. Hg = € b*b and
let « = —/+, with leaking/pumping rates o > o >0, V_ =10
(leaking), V4 = b* (pumping).

e Density matrix evolution and adjoint evolution of observables:

(A) 1= Tra (o' A) = Trg ((ep) A) = Trg (p (e 4)) .

17
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e Adjoint evolution of observables in the leaking/pumping cavity:

Or(ett™ A) = et L* A = et {i[e b*b, A] +
1 1
So- (A + [, AID) + S0y (64, 5] + [b, A1)}

e Weyl operators and the C*-algebra of CCR C %8B($g) (N.B.).
5 (Cb+¢d)

V2 }gecc |

e Adjoint evolution is a completely positive quasi-free *-automorphism,
which is continuous in the weak*-topology on 20(C):

W) = e D W) S (@) = ¢ eI

1

W(C) = {W(C) = exp [

18
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o Limit cavity state poo 1= lim;_o0 €L p:
: tL* 0 tL
im Trg (p (e W(C))) = Jim Trg ((e™p) W(C))

2 (5. o
— TI’@S(POO W(¢)) = exp {_K;l ((O'—i_a‘—:‘_))} |

e For o > o4 > 0 any initial cavity state p converges to the
quasi-free Gibbs state:

e~ Beav € b™b 3 1 n o_
(1 _e_ﬁcav E)—]. 9 cav -— c J+ .
e Evolution of the photon-number operator:

etL*b*b — e—(O'_—O'+)t b*b_l_ 0"‘ {1 _ e—(O'_—O‘_I_)t} )

O'_—O'_|_

Poo —

Here o4 /(0 —04) = (efcav € — 1)1,

19
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10. Atoms in a Leaky Cavity

e Repeated interaction = Markovian time-partition of Hamilto-
nian dynamics over intervals t € Ap(7) = [(n — 1)7,n7):

H(t) =Hp+1I® > E n

‘An(T) hEn

e For H, = e b*b Q1+ 1QFE np+ X (b*+b) ® nn the Kossakowski-
Lindblad generator L, has the form (o- > o4 > 0):

1
1

50+ {[b* pc ® pa,bl + [b*, pc ® pabl}.

20
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e Theorem 3.
(a) For repeated interaction in the Leaking/Pumping cavity,
o- > op > 0, the evolution of the Weyl is a convex combi-
nation of quasi-free completely positive maps.
(b) A regular normal limiting cavity state w¢ ,(-) exists:

= - ll1 = lim (Lor)"(pc)-
(c) It is an infinite convex combination of non-gauge-invariant
quasi-free states on the Weyl algebra 20(C).

21
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e Theorem 4. For repeated interaction in a leaky cavity with
o- > o4 > 0, the mean-value of photon number in the cavity is
bounded:

lim No(t = n1) = lim Try (076 pyo) =
A2 D
|,u|2 1_6—(0_—a+)7
x{1 + e_(a—_0+>7(1—2p) — 26_(0__0+)T/2(1—p) COSeT}
+ J+/(U— - U—|—> )
for any gauge-invariant initial state p,.
o If o4 = 0, then for er #= 27s, s € Z, lim,__,o wcja(b*b) = +o0.
o If o — o4, then liMme_—o wcja(b*b) = 4o00. For the leaking

and pumping of the same rate, the limiting state is the infinite-
temperature Gibbs state.

X
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Mumber of photons in the cavity
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