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Repeated interaction of a two-level atomsbeam with a one-

mode photon cavity is considered. For stationary beam of ran-

domly excited atoms this state is not stationary. For a leaky

cavity (Kossakowski-Lindblad dissipation) the corresponding open

system yields non-equilibrium steady state.
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1. Motivation: One-Atom Maser

 

• Two-Level Atom HA, • Photon-Field HF • Interaction: V
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2. Beam of Atoms and Cavity

• Regular Beam
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3. Mathematical Model: Non-Leaky Cavity

• A system: photon cavity + beam of two-level atoms. The

Hilbert space of the system is a tensor product, H := HC ⊗HA,

of boson Hilbert space of cavity HC and the Hilbert space of

two-level atoms HA := ⊗n≥1HAn, where HAn = C2 for n ≥ 1.

• The Hamiltonian of the one-mode cavity is: HC = ε b∗b ⊗ I,

where the photon (boson) creation-annihilation operators verify:

[b, b∗] = I and [b, b] = [b∗, b∗] = 0.

• The Hamiltonian for the individual n-th atom is : HAn =

I ⊗ E ηn, where

ηn =

[
1 0
0 0

]
=

1

2
(I + σz) , n ≥ 1 .
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• Time-dependent interaction between the n-th atom of the

beam and the cavity:

Wn(t) := χ[(n−1)τ,nτ)(t)(λ ηn ⊗ (b∗+ b)) , χ[a,b)(t ∈ [a, b)) = 1 .

• For a tuned homogeneous beam, exactly one atom always

present in the cavity.

• The Hamiltonian of the model: the cavity + the beam of

atoms

H(t) := HC +
∑
n≥1

(HAn +Wn(t)) =

εb∗b⊗ I +
∑
n≥1

I ⊗ Eηn +
∑
n≥1

χ[(n−1)τ,nτ)(t)(ληn ⊗ (b∗+ b)).
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4. Hamiltonian Dynamics of State: Chain Rule

• For t ∈ [(n − 1)τ, nτ) =: ∆n(τ), only the n-th atom of the
beam interacts with the cavity: a tuned case.
• The evolution is defined by H(t)

∣∣∣
∆n(τ)

:= Hn+I⊗
∑
k 6=nEa

∗
kak,

where

Hn = ε b∗b⊗ I + I ⊗ E ηn + λ (b∗+ b)⊗ ηn .
• Since χ∆n(τ)(t < 0) = 0, the initial density-matrix state :
ρ(t = −0) := ρC⊗ρA corresponds to the non-interacting system.
• Suppose (for simplicity) that the initial product-state of
atoms ρA :=

⊗
k≥1 ρk commutes with ηn for any n. For ex-

ample, all atoms are in the Gibbs equilibrium state:

ρk = e−βEηk/(1 + e−βE) .
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• The Hamiltonian dynamics of the state is defined by:

∂tρ(t) = −i[H(t), ρ(t)] =: L(t)ρ(t) .

• Let Ln := L(t), t ∈ [(n − 1)τ, nτ). Then for the piece-wise

constant 1st atom-evolution, when n = 1, one obtains:

ρ(t) = e−itH1(ρC ⊗ ρn=1)eitH1 = etL1ρ(t = 0) .

• The chain of atoms in the beam implies the chain rule for the

Hamiltonian dynamics. When n− 1 atoms are passed through

the cavity and the n-th is still inside, one gets:

ρ(t) = eνLneτLn−1... eτL2eτL1(ρC ⊗
n⊗

k=1

ρk) ,

here t ∈ [(n− 1)τ, nτ) and t = (n− 1)τ + ν, 0 ≤ ν < τ .
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5. Cavity Evolution and Pumping

• The cavity density matrix state ρtC at the moment: t = nτ , is
the partial trace over the first n atoms of the beam:

ρnτC := TrHAρ(nτ) = TrHA[eτLn...eτL2eτL1(ρC ⊗
n⊗

k=1

ρk)] =

TrHAn{e
τLn[TrHAn−1

...TrHA1
eτLn−1...eτL2eτL1(ρC ⊗

n−1⊗
k=1

ρk)⊗ ρn]}

= TrHAn[eτLn(ρ(n−1)τ
C ⊗ ρn)] =: L [ρ(n−1)τ

C ] = Ln[ρC] .

• To study the (reduced) evolution of the state ρtC we first look
on the variation in the cavity of the mean photon number:

N(t) := TrHC(b∗b ρtC) .
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• Theorem 1. Let ρC be a gauge-invariant state. Then for a

stationary beam with p := Tr(ηn ρAn), the mean photon num-

ber in the cavity for t = nτ is

N(t) = N(0) + n p(1− p)
2λ2

ε2
(1− cos ετ) + p2 2λ2

ε2
(1− cosnετ).

• Remark 1 (Pumping). Theorem implies that only the beam

of randomly exited atoms (0 < p < 1) is able to produce un-

limited pumping of the cavity, under the following condition:

{ετ 6= 2πm : m ∈ N ∪ 0} (detuning).

• When all atoms are exited (p = 1), then the cavity state is os-

cillating (Rabi oscillations). Whereas the beam of non-exciting

atoms (p = 0) keeps N(t) = N(0).
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6. Energy Production

• Energy variation between moments tk+1 and tk = (k−1)τ+ν:

∆E(tk+1, tk) := TrHC⊗HA(ρ(tk+1)H(tk+1))−TrHC⊗HA(ρ(tk)H(tk))

=
2λ2

ε
{p(1− p) [1− cos(τε)] + p2[cos((k − 1)τε)− cos(kτε)]}

• Theorem 2. The interaction-jump external work for [t1, tn+1):

∆E(tn+1, t1) =
2λ2

ε
{n p(1− p)[1− cos(τε)] + p2[1− cosnτε]} .

• The Cavity energy-variation for t = 0 → t = nτ + ν :

∆EC(t) = ε(N(t)−N(0)) =
2λ2

ε
{n p(1−p) (1−cos ετ)+p2 (1−cosnετ)}.
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7. Entropy Production

• Relative Entropy of the normal state ρ with respect to the
normal state ρ0 can be defined as:

Ent(ρ|ρ0) := TrH(ρ ln ρ− ρ ln ρ0) ≥ 0 .

• Entropy Production is then naturally to define by

∆S(t) := Ent(ρ(t)|ρ(t = 0)) = TrHC⊗HA{ρ(t) ln
ρ(t)

ρC ⊗ ρA
} .

• Suppose that all atoms of the beam are in the Gibbs state with
temperature 1/β :

ρA(β) :=
⊗
n≥1

ρAn(β) , ρAn(β) :=
e−βHAn

Z(β)
.
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• Then (in general) the Relative Entropy variation for t = 0→
t = nτ + ν is equal to

∆S(t) = TrHC{[ρC − ρ
nτ
C ] ln ρC}+

β
n∑

k=1

TrHC⊗HAk
{(ρ(k−1)τ

C ⊗ ρk)[eiτHk(I ⊗HAk)e
−iτHk − I ⊗HAk]} .

• Since for our model [Hk, HAk] = 0, the last term vanishes and

for initial Gibbs cavity state with temperature 1/β

∆S(t) = TrHC{[ρC − ρ
nτ
C ] ln ρC} =

TrHC{[ρC − ρ
nτ
C ](−β ε b∗b− ln(1− e−βε)} =

β
2λ2

ε
{n p(1− p) (1− cos ετ) + p2 (1− cosnετ)} .
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• Let denote by ∆EC(t) = ε(N(t)−N(0)) the energy variation of

the thermal cavity, which is due to the photon number variation,

see Theorem 1.

• Then relation:

∆S(t) = β
2λ2

ε
{n p(1− p) (1− cos ετ) + p2 (1− cosnετ)}

= β ε(N(t)−N(0)) ,

expresses the 2nd Law of Thermodynamics:

∆S(t) = β∆EC(t) ,

for pumping of the initially thermal cavity.
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8. Open Systems and Reduced Dynamics
• Let {S,HS} be an Open Quantum System interacting with the
external Reservoir {R,HR}. Then:
a. HS ⊗ HR is the Hilbert space of the total system.
b. Htot =: HS⊗I+I⊗HR+HSR is the total system Hamiltonian.
c. The initial state of the total system is ωt=0 := ωS ⊗ωR and
evolution: ωt := exp (−itHtot)(ωS ⊗ ωR) exp (itHtot).
d. Evolution of the state for the open system {S,HS} is the
mapping: ωS 7→ Λt ωS := TrHR

(ωt) =: ρtS (reduced dynamics) .
NB [Kraus-Kossakowski] Form of the reduced dynamical map:

Λτ : ρtS 7→ Λτ ρ
t
S =

∑
α
Cα(t, τ) Wα ρ

t
S W ∗α = ρt+τ

S ,

for a family of bounded operators Wα ∈ B(HS) and a function
Cα(t, τ) ≥ 0 satisfying the condition

∑
αCα(t, τ) W ∗αWα = I.
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• The Heisenberg picture defines a dual reduced dynamics Λ∗t :

ρtS(A) = TrHS
((Λt ωS)A) =: TrHS

(ωS Λ∗tA) , A ∈ B(HS).

NB Dynamics Λ∗t is unity-preserving positive map on B(HS).

(i) A (canonical) form of the dual reduced dynamical map:

Λ∗τ (Λ∗tA) =
∑
α
Cα(t, τ) W ∗α Λ∗tA Wα , Λ∗τ I = I , A ∈ B(HS), .

(ii) The map Λ∗t is completely positive, i.e. the operators:

(Λ∗t )n := (Λ∗t ⊗ I) : B(HS ⊗ Cn)→ B(HS ⊗ Cn)

are positive for all n = 1,2, . . ., and .

• Generally the function t 7→ Λt (or mapping t 7→ Λ∗t ) satisfies the

Bogoliubov hierarchy of integro-differential equations.
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9. Open Systems and Quantum Dynamical Semigroups

• Markov Approximation ⇔ Quantum Evolution Operators:
a.

{
Λt,0

}
t≥0

reduced dynamics (for time-dependent HSR(t)).

b. Λt,sΛs,0 = Λt+s,0 Markov property = cocycle property .
c. ρtS(A) = TrHS

((Λt,0 ωS)A) is a continuous function of t ≥ 0
for any density matrix ωS ∈ TrClass(HS) and A ∈ B(HS).
• Operator family {ρtS = Λt,0 ωS}t≥0 is solution of the quantum
Markovian master equation with (unbounded) generator L(t):

d

dt
ρtS = L(t)ρtS , Λt,s := I +

∫ t
s
dτL(τ)Λτ,s.

• Euler formula for the Propagator (Evolution Operator):

Λt,s = lim
m→∞

1∏
k=m

[
I −

t− s
m

L(s+ k
t− s
m

)
]−1

.
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• For time-independent HSR and Markov Approximation of com-

pletely positive evolution ⇔ Quantum Semigroup :

a. Markov completely positive maps: ΛtΛs = Λt+s .

b.
{

Λt = et L
}
t≥0

semigroup of reduced quantum evolution with

generator L.

c. ρtS(A) = TrHS
((Λt ωS)A) is a continuous function of t ≥ 0

for any density matrix ωS ∈ TrClass(HS) and A ∈ B(HS).

• Operator family {ρtS = Λt ωS}t≥0 is solution of the quantum

Markovian master equation with (unbounded) generator L:

d

dt
ρtS = LρtS , Λt ρ = lim

m→∞[I/(I − tL/m)]mρ .
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• [Kossakowski-Lindblad-Davies] A standard form of Quantum

Semigroup generators L and L∗ is defined by a family of oper-

ators {Vα ∈ B(HS)}α with
∑
α VαV

∗
α ∈ B(HS):

Lρ = −i[HS, ρ] +
1

2

∑
α
σα{[Vαρ, V ∗α ] + [Vα, ρV

∗
α ]} ,

L∗A = i[HS, A] +
1

2

∑
α
σα{V ∗α [A, Vα] + [V ∗α , A]Vα} .

• Example: Open Leaking/Pumping Cavity. HS = ε b∗b and

let α = −/+, with leaking/pumping rates σ− ≥ σ+ ≥ 0, V− = b

(leaking), V+ = b∗ (pumping).

• Density matrix evolution and adjoint evolution of observables:

〈A〉t := TrHS
(ρtA) = TrHS

((etLρ)A) = TrHS
(ρ (etL

∗
A)) .
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• Adjoint evolution of observables in the leaking/pumping cavity:

∂t(e
tL∗A) = etL

∗
L∗A = etL

∗
{i[ε b∗b, A] +

1

2
σ−(b∗[A, b] + [b∗, A]b) +

1

2
σ+(b[A, b∗] + [b, A]b∗)} .

• Weyl operators and the C∗-algebra of CCR ⊆ B(HS) (N.B.).

W(C) :=

{
W (ζ) = exp

[
i√
2

(ζ b+ ζ b∗)

]}
ζ∈C

.

• Adjoint evolution is a completely positive quasi-free *-automorphism,
which is continuous in the weak*-topology on W(C):

etL
∗
W (ζ) = e−Ωt(ζ) W (ζ(t)) , ζ(t) := ζ ei εt−(σ−−σ+)t/2 .

Ωt(ζ) :=
|ζ|2

4

(σ−+ σ+)

(σ− − σ+)

{
1− e−(σ−−σ+)t

}
.

18
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• Limit cavity state ρ∞ := limt→∞ etLρ:

lim
t→∞

TrHS
(ρ (etL

∗
W (ζ))) = lim

t→∞
TrHS

((etLρ)W (ζ))

= TrHS
(ρ∞W (ζ)) = exp

{
−
|ζ|2

4

(σ−+ σ+)

(σ− − σ+)

}
.

• For σ− > σ+ ≥ 0 any initial cavity state ρ converges to the
quasi-free Gibbs state:

ρ∞ =
e−βcav ε b

∗b

(1− e−βcav ε)−1
, βcav :=

1

ε
ln
σ−
σ+

.

• Evolution of the photon-number operator:

etL
∗
b∗b = e−(σ−−σ+)t b∗b+

σ+

σ− − σ+

{
1− e−(σ−−σ+)t

}
.

Here σ+/(σ− − σ+) = (eβcav ε − 1)−1.

19



IX International Conference on MathPhys, Yerevan 2012

10. Atoms in a Leaky Cavity

• Repeated interaction = Markovian time-partition of Hamilto-
nian dynamics over intervals t ∈∆n(τ) = [(n− 1)τ, nτ):

H(t)
∣∣∣
∆n(τ)

:= Hn + I ⊗
∑
k 6=n

E ηk

• For Hn = ε b∗b⊗ I + I ⊗E ηn+λ (b∗+ b)⊗ ηn the Kossakowski-
Lindblad generator Lσ,n has the form (σ− ≥ σ+ ≥ 0):

Lσ,n ρC ⊗ ρA := −i[Hn, ρC ⊗ ρA] +
1

2
σ− {[b ρC ⊗ ρA, b∗] + [b, ρC ⊗ ρA b∗]}+

1

2
σ+ {[b∗ ρC ⊗ ρA, b] + [b∗, ρC ⊗ ρA b]}.
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• Theorem 3.

(a) For repeated interaction in the Leaking/Pumping cavity,

σ− ≥ σ+ ≥ 0, the evolution of the Weyl is a convex combi-

nation of quasi-free completely positive maps.

(b) A regular normal limiting cavity state ωC,σ(·) exists:

ρ∞σ := ‖ · ‖1 − lim
n→∞(Lσ,τ)n(ρC).

(c) It is an infinite convex combination of non-gauge-invariant

quasi-free states on the Weyl algebra W(C).
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• Theorem 4. For repeated interaction in a leaky cavity with
σ− ≥ σ+ ≥ 0, the mean-value of photon number in the cavity is
bounded:

lim
n→∞Nσ(t = nτ) = lim

n→∞TrHC(b∗b ρnτσ,C) =

λ2

|µ|2
p

1−e−(σ−−σ+)τ
×

×{1 + e−(σ−−σ+)τ(1−2p)− 2e−(σ−−σ+)τ/2(1−p) cos ετ}
+ σ+/(σ− − σ+) ,

for any gauge-invariant initial state ρC.
• If σ+ = 0, then for ετ 6= 2πs, s ∈ Z, limσ−→0 ωC,σ(b∗b) = +∞.
• If σ− → σ+, then limσ−→σ+ ωC,σ(b∗b) = +∞. For the leaking
and pumping of the same rate, the limiting state is the infinite-
temperature Gibbs state.
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