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Heisenberg ferromagnet

Heisenberg spin-1
2 ferromagnet: HF = −
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where Λ is a box in Zd and HF acts in
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x∈Λ

C2
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Tóth’s representation of ferromagnet (1993)

Motivation: Conlon-Solovej’s work on bounds for the free energy,
using random-walk representation (1991)

Independent Poisson point
processes on ×

edges of Λ[0, β]

Random interchange model
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Tóth’s representation of ferromagnet (1993)

Motivation: Conlon-Solovej’s work on bounds for the free energy,
using random-walk representation (1991)

Independent Poisson point
processes on ×

edges of Λ[0, β]

Random interchange model

Z =
∫

dρ(ω)2|L(ω)|

〈S3
xS

3
y〉 = 1

4P
(
(x, 0) ∼ (y, 0)

)
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Picture in 2+1 dimensions
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Aizenman-Nachtergaele’s repr. of antiferro. (1994)

Context: The representation allows to relate the 1D quantum model to
2D classical random cluster and Potts models

Independent Poisson point
processes on ×

edges of Λ[0, β]

Z =
∫

dρ(ω)2|L(ω)|

〈S3
xS

3
y〉 = (−1)‖x−y‖1

4

×P
(
(x, 0) ∼ (y, 0)

)
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One-parameter family of Heisenberg models

H(u) = −
∑
x,y∈Λ
‖x−y‖=1

(
S1
xS

1
y + uS2

xS
2
y + S3

xS
3
y

)

u = +1: Heisenberg ferromagnet
u = −1: unitarily equivalent to Heisenberg antiferromagnet,
HAF = U−1H(−1)U with U =

∏
x∈ΛB

eiπS2
x

u = 0: quantum XY model, equivalent to hard-core bosons

Partition function: Z = Tr e−βH
(u)
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Repr. for one-parameter family of Heisenberg models

1

0

Let ρ denote Poisson point
processes on ×

edges of Λ[0, β], where
crossings occur with intensity 1+u

2
and bars occur with intensity 1−u

2

One can combine and extend Tóth
and Aizenman-Nachtergaele:

Theorem (U, 2012)

Z =
∫

dρ(ω) 2|L(ω)|

〈S3
xS

3
y〉 =

1
4

P
(
(x, 0) ∼ (y, 0)

)
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Long-range order vs macroscopic loops

Definition of long-range order (spontaneous magnetization):
1
|Λ|2

∑
x,y∈Λ

〈S3
xS

3
y〉 > c > 0, with c indep. of Λ

Definition of macroscopic loops: E
(L(0,0)

β|Λ|
)
> c > 0

Using properties of Duhamel two-point function and Falk-Bruch
inequality, we have that

4
|Λ|2

∑
x,y∈Λ

〈S3
xS

3
y〉−

√
2d(1−u)
|Λ| E

(L(0,0)

β|Λ|
)

6 E
(L(0,0)

β|Λ|
)

6 4
|Λ|2

∑
x,y∈Λ

〈S3
xS

3
y〉

D. Ueltschi (Warwick) Yerevan 8 / 27



Existence of macroscopic loops / spont. magnetization

Theorem (Dyson, Lieb, Simon (1978) for d > 5, Kennedy,
Lieb, Shastry (1988) for d > 3)

Assume u ∈ [−1, 0]. There exists β0 <∞ and c > 0 such that for
all β > β0,

E
(L(0,0)

β|Λ|
)
> c

Proved by extension of the reflection positivity method of Fröhlich,
Simon, Spencer (1976) to quantum systems
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Proof of the theorem
Partition function with field

Inner product on L2(⇤⇥ [0, �]):

(f, g) =
X
x2⇤

Z �

0
fxt gxt dt

Introduce a partition function with real field v 2 C2(⇤⇥ [0, �]):

Z(v)=
Z

d⇢(!)
X
�:!

exp
⇢

(�, �v)+(v,�v)+
X
x2⇤

Z �

0
dt

h
a�xt

@2vxt

@t2
�b

⇣@vxt

@t

⌘2i�
where the first sum is over spins �xt = ±1, constant on each loop

Fourier transform in space and time: for k 2 2⇡
L ⇤ and ⌧ 2 2⇡

� Z,

b(k, ⌧) =
X
x2⇤

Z �

0
e�ikx�i⌧t (x, t)dt
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Infrared bound

We prove below “Gaussian domination” Z(v) 6 Z(0) (for small v),
with b > 8a2d(1�u)(e1, 0). Choosing vxt = h cos(kx + ⌧t) with h! 0,
we get the infrared bound

b(k, ⌧) 6 2
"(k) + b⌧2

("(k) + a⌧2)2

where "(k) = 2
dX

i=1

(1� cos ki)

Optimizing, we get b(k, ⌧) 6 2
"(k) + ⌧2

8d(1�u)(e1,0)

Case ⌧ = 0: Dyson, Lieb, Simon (1978). Recent similar bound for
Ising model in transverse field, Björnberg (arXiv:1205.3385)

D. Ueltschi (Warwick) University of York 12 / 25

Consequence: macroscopic loops

Use KLS sum rule: (e1, 0) =
1

�d|⇤|
X

k2 2⇡
L

⇤

X
⌧2 2⇡

�
Z

⇣ dX
i=1

cos ki

⌘b(k, ⌧)

Then

E
⇣L(0,0)

�|⇤|
⌘

=
b(0, 0)
�|⇤| > (e1, 0)� 1

�|⇤|
X
⌧ 6=0

C

⌧2
� 1

�d|⇤|
X
k 6=0

X
⌧

2(
P

cos ki)+
"(k)+ ⌧2

8d(1�u)(e1,0)

Then

lim
�!1

lim
|⇤|!1

E
⇣L(0,0)

�|⇤|
⌘

>
p

(e1, 0)

⇥
p

(e1, 0)�
p

8d(1� u)
d(2⇡)d

Z
[�⇡,⇡]d

(
P

cos ki)+p
"(k)

dk

�

Positive for d > 3. Better bound in Kennedy, Lieb, Shastry (1988)
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Reflection positivity

The goal now is to prove Z(v) 6 Z(0). We prove below “reflection
positivity”

Z(v1, v2)2 6 Z(v1, Rv1)Z(Rv2, v2)

Suppose (v1, v2) is maximiser. Then (v1, Rv1) is also maximiser

There is a space-invariant maximiser!
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Reflection positivity

We need to cast Z(v) in reflection positive form
(We set a = b = 0 for simplicity)

Z(v) =
Z

d⇢(!)
X
�:!

exp
⇢
�

X
{x,y}

Z �

0
dt

h
(�xt��yt)(vxt�vyt) + (vxt�vyt)2

i�

=
Z

d⇢(!)
X
�:!

exp
⇢ X

{x,y}

Z �

0
dt

h
�(1

2�xt�vxt � 1
2�yt+vyt)2 + 1

4(�xt��yt)2
i�

= lim
N!1

Z
d⇢(!)

X
�:!

exp
⇢ X

{x,y}

Z �

0
dt

h
�(...)2

i�
Y
{x,y}

Y
t2 �

N
{1,...,N}

⇣
1 + �

4N (�xt � �yt)2
⌘
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Reflection positivity

Z(v) = lim
N!1

Z
d⇢(!)

X
�:!

exp
⇢ X

{x,y}

Z �

0
dt

h
�(...)2

i�
Y
{x,y}

Y
t2 �

N
{1,...,N}

⇣
1 + �

N � �
N ��xt=�yt

⌘

=
Z

d⇢0(!)
X
�:!

exp
⇢ X

{x,y}

Z �

0
dt

h
�(1

2�xt � vxt � 1
2�yt + vyt)2

i�

where ⇢0 is a Poisson point process on ⇥
edges of ⇤[0, �] where

�==� =
� +
====
+ � +

+ �
====� +

+
� �
====
+ +

+
+ +
====� �

occurs with intensity 1+u
2 , and

� �
====
+ +

+
+ +
====� � occurs with intensity �u

We need u 2 [�1, 0]
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Reflection positivity

Z(v) =
Z

d⇢0(!)
X
�:!

exp
⇢
�

X
{x,y}

Z �

0
dt

�
1
2�xt � vxt � 1

2�yt + vyt

�2
�

−+

−−

−

β

0

++

+

Manifestly reflection positive! (Cf Fröhlich, Simon, Spencer 1976)
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Reflection positivity in time direction

For v space-invariant,

Z(v) = lim
N!1

Z
d⇢(!)

X
�:!

exp
⇢
�N

�

X
x2⇤

X
t2 �

N
{1,...,N}h

a(�
x,t+ �

N
� �xt)(vt+ �

N
� vt) + b(v

t+ �
N
� vt)2

i�
β

0

β/N

This gives a period-2 maximiser
vt = (�1)Nt/�c

For b > 8a2d(1� u)(e1, 0), one can show
that Z(v) 6 Z(0) for v small
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Existence of macroscopic loops / spont. magnetization

Theorem (Dyson, Lieb, Simon (1978) for d > 5, Kennedy,
Lieb, Shastry (1988) for d > 3)

Assume u ∈ [−1, 0]. There exists β0 <∞ and c > 0 such that for
all β > β0,

E
(L(0,0)

β|Λ|
)
> c

Proved by extension of the reflection positivity method of Fröhlich,
Simon, Spencer (1976) to quantum systems

Can we say more about the macroscopic loops? Is there just one, or
several loops?

— There are infinitely many!
— Rather surprisingly, one can formulate an exact conjecture for their
joint distribution: Poisson-Dirichlet!
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Random partition of loop lengths

A partition of [0, 1] is a sequence (λ1, λ2, . . . ) of nonnegative,
decreasing numbers such that

∑
i λi = 1

At finite volume, the following is a random partition of [0, 1]:( L1

β|Λ| ,
L2

β|Λ| ,
L3

β|Λ| , . . .
)

Goal: understand the limit distribution as |Λ| → ∞. The meaning of(
L1
β|Λ| ,

L2
β|Λ| ,

L3
β|Λ| , . . .

) d−→ (λ1, λ2, λ3, . . . )

is that the joint distribution of the first k numbers of the left side
converge (in probability) to the joint distribution of the first k numbers
of the right side, for any k
As |Λ| → ∞, only macroscopic loops matter, and they converge to a
random partition of [0, ν] where ν turns out to be equal to 3 E(L(0,0)

β|Λ| )
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Poisson-Dirichlet distribution

Poisson-Dirichlet is best understood with help of the
Griffiths-Engen-McCloskey GEM distribution (“stick breaking”):

— Choose λ1 uniformly in [0, 1]
— Choose λ2 uniformly in [0, 1− λ1]
— Choose λ3 uniformly in [0, 1− λ1 − λ2]
— Etc...
Rearranging (λi) in decreasing order gives Poisson-Dirichlet PD(1)

This is a one-parameter family of distributions. For Poisson-Dirichlet
PD(θ), choose the λjs as beta random variables with parameter θ > 0,
P(λj > s) = (1− s)θ (with rescaling)
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Why should we expect Poisson-Dirichlet?

The mechanism is rather indirect, but it is very general

— Introduce a stochastic process such that the equilibrium measure
2|L(ω)| dρ(ω) is the invariant measure

— Effective split-merge process on partitions

— The invariant measure of the split-merge process is Poisson-Dirichlet
(Mayer-Wolf, Zeitouni, Zerner 2002)

This is motivated by Schramm (2005), who studied compositions of
random transpositions, proving a conjecture of Aldous about the
Poisson-Dirichlet distribution of the lengths of permutation cycles
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Invariant measure of stochastic process

A new edge-time (e, t) appears at rate 2αdt if its appearance causes
a loop to split, and at rate 2−αdt if it causes two loops to merge
An edge-time already present disappears at rate 21−α if its
removal causes a loop to split, and at rate 2−(1−α) if it causes two
loops to merge

By considering all possible cases, we can check the detailed balance
condition:

ρ(dω)2|L(ω)|p(ω,dω′) = ρ(dω′)2|L(ω′)|p(ω′, dω)

and since the process is ergodic, the measure ρ(dω)2|L(ω)| is the unique
invariant measure
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Invariant measure of stochastic process

This stochastic process necessarily splits a loop or merges two loops
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Invariant measure of stochastic process

This stochastic process necessarily splits a loop or merges two loops

B) Removing an edge within a loop:
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Invariant measure of stochastic process
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Split-merge process (coagulation-fragmentation)

Stochastic process on partitions of [0, 1]

choose two numbers randomly, independently in [0, 1]
if they fall in two distinct elements of the partition: merge them
with probability θ−1

if they fall in same element of the partition: split it (uniformly)
rearrange the elements in decreasing order

We expect that macroscopic loops are spread everywhere, that
there are no correlations between different regions in space

Macroscopic loops merge and split at the same rates as in the
split-merge process
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Numerical evidence in related model
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Figure for random lattice permutations, cf Grosskinsky, Lovisolo, U (2012)
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Related situation: permutation cycles in ideal Bose gas

Motivated by Feynman (1953), Sütő (1993, 2002)
State space: ΩΛ,n = Λn × Sn
Classical model with Gibbs measure

1
Z

n∏
i=1

e−‖xi−xσ(i)‖2 θ#cycles in σdx1 . . . dxn

(Ideal Bose gas: θ = 1)

Critical density ρc = θπd/2ζ(d/2)

Let L1, L2, . . . the lengths of permutation cycles in decreasing order

Theorem (Betz, U, 2011)(
L1
n ,

L2
n , . . .

)
d−→ PD(θ) of [0, ν] where ν = max

(
0, ρ−ρcρ

)
The spatial structure disappears when considering the Fourier space, so
the mechanism here is somewhat different
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Conclusion

Fascinating representations of quantum spin systems: Random
loop models

Phase transition to a phase with macroscopic loops (supported by
results due to reflection-positivity method, Dyson, Lieb, Simon
and Kennedy, Lieb, Shastry)
Long cycles satisfy an effective split-merge process
=⇒ Poisson-Dirichlet distribution
Rigorous result of Schramm (2005) for the random interchange
model on the complete graph
Heuristics supported by numerical results for lattice permutations

THANK YOU!
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