Stability for system of fermions with zero-range interactions

Alessandro Teta Università di L'Aquila

Stochastic and Analytic Methods in Mathematical Physics Yerevan, Sept. 2-9, 2012

- Finco, T., Rep. Math. Phys. (2012)
- Correggi, Dell'Antonio, Finco, Michelangeli, T., Rev. Math. Phys. (2012)

Introduction

System of n quantum particles in \mathbb{R}^d , d=1,2,3, interacting via a zero-range, two-body interaction. Formally

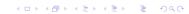
$$\mathcal{H} = -\sum_{i=1}^{n} \frac{1}{2m_i} \Delta_{\mathbf{x}_i} + \sum_{\substack{i,j=1\\i < j}}^{n} \mu_{ij} \, \delta(\mathbf{x}_i - \mathbf{x}_j),$$

where $\mathbf{x}_i \in \mathbb{R}^d$, i = 1, ..., n, m_i is the mass, $\Delta_{\mathbf{x}_i}$ is the Laplacian relative to \mathbf{x}_i , and $\mu_{ij} \in \mathbb{R}$. We set $\hbar = 1$.

Original physical motivation in Nuclear Physics. More recently, relevant in the analysis of ultra-cold quantum gases. Here it is "experimentally realized" the unitary limit

$$a \to \infty$$
, $r_0 \to 0$

a scattering length, r₀ effective range



General problem: rigorous construction of \mathcal{H} as self-adjoint and, possibly, bounded from below operator in $L^2(\mathbb{R}^{nd})$

1. Definition

Notice: $\mathcal{H}\psi = \mathcal{H}_0\psi$ if ψ vanishes on each hyperplane $\{\mathbf{x}_i = \mathbf{x}_j\}$

Then consider

$$\dot{\mathcal{H}}_0 = -\sum_{i=1}^n \frac{1}{2m_i} \Delta_{\mathbf{x}_i}, \qquad D(\dot{\mathcal{H}}_0) = C_0^{\infty}(\mathbb{R}^{nd} \setminus \bigcup_{i < j} \{\mathbf{x}_i = \mathbf{x}_j\})$$

 $\dot{\mathcal{H}}_0$ is symmetric but not self-adjoint. One (trivial) self-adjoint extension is the free Hamiltonian.

By definition, any other self-adjoint extension of \mathcal{H}_0 is a Hamiltonian of n quantum particles in \mathbb{R}^d with zero-range interactions.

2. Explicit construction

More delicate and strongly dependent on the dimension d. Each self-adjoint extension of \mathcal{H}_0 is characterized by a (generalized) boundary condition on each hyperplane $\{\mathbf{x}_i = \mathbf{x}_j\}$.

For d = 3, n = 2, in the relative coordinate x

$$\mathcal{H} = \frac{1}{2m} \Delta_{\mathbf{x}} + \delta(\mathbf{x})$$

the entire class of self-adjoint extensions of \mathcal{H}_0 can be constructed. The domain of each extension consists of functions $\psi \in H^2(\mathbb{R}^3 \setminus \{0\})$ satisfying the boundary condition at the origin

$$\psi(\mathbf{x}) = rac{q}{|\mathbf{x}|} + lpha q + o(1), \quad ext{ for } |\mathbf{x}| o 0, \quad q \in \mathbb{C}, lpha \in \mathbb{R}$$

For d=3, n>2, by analogy, one takes the Skornyakov-Ter-Martirosyan (STM) extension H_{α} , defined on $H^2(\mathbb{R}^{3n}\setminus \cup_{i< j}\{\mathbf{x}_i=\mathbf{x}_j\})$ and s.t.

$$\psi(\mathbf{x}_1,\ldots,\mathbf{x}_n) = \frac{q_{ij}}{|\mathbf{x}_i-\mathbf{x}_i|} + \alpha q_{ij} + o(1), \quad \text{for } |\mathbf{x}_i-\mathbf{x}_j| \to 0, \quad \alpha \in \mathbb{R}$$

 q_{ij} functions on $\{\mathbf{x}_i = \mathbf{x}_i\}$ and α strength of the interaction

As a matter of fact, in general STM extension H_{α} is symmetric but not self-adjoint.

For three identical bosons and for three different particles, any self-adjoint extension of STM is unbounded from below (sequence of eigenvalues $E_k \to -\infty$)
Faddeev, Minlos (1962); Melnikov, Minlos (1991)

Instability known as Thomas effect

Remark: Thomas effect can be avoided introducing "non local" boundary conditions (e.g. choosing α as integral operator) Albeverio, Hoegh-Krohn, Streit (1977); Frank, Seiringer (2012)

System of fermions

Thomas effect could not occur if the Hilbert space is suitably restricted (symmetry constraint)

Indeed, for a system of identical fermions the zero-range interaction is ineffective

Open problem: stability or occurrence of Thomas effect for a system composed by a mixture of two different species of fermions. The answer depends on m (mass ratio), N, M (number of fermions).

Partial results only in the case of N fermions (of mass =1) plus one particle of mass m

Physical literature

- case 2+1 (Efimov (1972),(1973); Petrov (2003)) There is a critical mass $m^*(2) \simeq 0.0735$ s.t. $m < m^*(2)$ three-body bound states of energy $\to -\infty$ $m > m^*(2)$ boundedness from below - case 3+1 (Castin, Mora, Pricoupenko (2010))
- $m^*(2) < m < 0.0747$ four-body bound states of energy $\to -\infty$

Rigorous results

- case 2+1 (Shermatov (2003); Minlos (2011)) For $m < m^*(2)$ STM extension (restricted to l=1) is not self-adjoint and all its self-adjoint extensions are unbounded from below (Thomas)
- case N+1 (Minlos (2011)) For N<5 and m suff. large STM extension is self-adjoint

Results

We consider a system of N fermions (of mass = 1) plus a different particle (of mass m),

we construct, via renormalization procedure (Dell'Antonio, Figari, T. (1994)), the quadratic form \mathcal{F}_{α} , naturally associated with the STM extension H_{α}

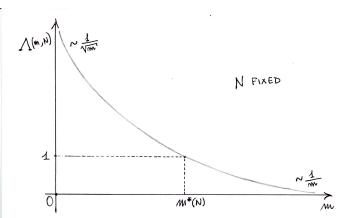
$$\mathcal{F}_{\alpha}(u) = (u, H_{\alpha}u)$$
 for $u \in D(H_{\alpha})$,

we define $m^*(N)$ as the unique solution (for N fixed) of

$$\Lambda(\textit{m},\textit{N}) := 2\pi^{-1}(\textit{N}-1)(\textit{m}+1)^2 \left[\frac{1}{\sqrt{\textit{m}(\textit{m}+2)}} - \arcsin\left(\frac{1}{\textit{m}+1}\right) \right] = 1$$

$$\Lambda(m,N)>0$$
, decreases with m , $\lim_{m\to 0}\Lambda(m,N)=\infty$, $\lim_{m\to \infty}\Lambda(m,N)=0$ therefore

 $m^*(N)>0$, increases with N, for N=2 reduces to $m^*(2)$ and $\Lambda(m,N)<1$ iff $m>m^*(N)$



and we prove

Th. 1 (stability)

If $N\geq 2$ and $m>m^*(N)$ then \mathcal{F}_α is closed and bounded from below. In particular \mathcal{F}_α is

- positive for $\alpha \geq$ 0 and
- bounded below by $-\frac{\alpha^2}{4\pi^4(1-\Lambda(m,N))^2}$ for $\alpha<0$.

This implies:

If $N \ge 2$ and $m > m^*(N)$ then the STM extension H_{α} is self-adjoint and bounded from below. In particular H_{α} is

- positive for $\alpha \geq$ 0 and
- inf $\sigma(H_{\alpha}) \geq -\frac{\alpha^2}{4\pi^4(1-\Lambda(m,N))^2}$ for $\alpha < 0$.

Th. 2 (instability)

If $N \geq 2$ and $m < m^*(2)$ then \mathcal{F}_{α} is unbounded from below for any $\alpha \in \mathbb{R}$.

This suggests that Thomas effect occurs.

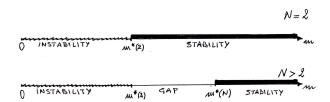
Sequence of trial functions s.t. $\mathcal{F}_{\alpha}(u_n) \to -\infty$ for N=2, then the sequence is adapted to the case N>2, with N-2 fermions sufficiently far away.

Optimal result for N=2

Partial result for N > 2

e.g. by numerical simul., the case m=1 seems stable for any N.

The role of the antisymmetry must be more carefully taken into account



Case 2+1: the quadratic form \mathcal{F}_{α}

Coord. $\mathbf{x}_1, \mathbf{x}_2$ and \mathbf{x}_0 , C.M. frame, rel. coord. $\mathbf{y}_1 = \mathbf{x}_1 - \mathbf{x}_0$, $\mathbf{y}_2 = \mathbf{x}_2 - \mathbf{x}_0 \ (\to \mathbf{k}_1, \mathbf{k}_2)$, Hilbert space $L_f^2(\mathbb{R}^6)$.

The interaction is not a small form perturbation of the free Ham.

Formal energy form + renorm. procedure $\to \mathcal{F}_{\alpha}(u) = (u, H_{\alpha}u)$.

Domain strictly larger than $H_f^1(\mathbb{R}^6)$. One has to add

$$\widehat{\mathcal{G}^{\lambda}\xi}(\mathbf{k}_1,\mathbf{k}_2) = \frac{\hat{\xi}(\mathbf{k}_1) - \hat{\xi}(\mathbf{k}_2)}{\mathbf{k}_1^2 + \mathbf{k}_2^2 + \frac{2}{m+1}\,\mathbf{k}_1 \cdot \mathbf{k}_2 + \lambda} \qquad \qquad \xi \in H_f^{1/2}(\mathbb{R}^3)$$

Def.

$$D(\mathcal{F}_{\alpha}) = \left\{ u \in L_f^2(\mathbb{R}^6) \mid \exists \xi \in H_f^{1/2}(\mathbb{R}^3) \text{ s.t. } u - \mathcal{G}^{\lambda} \xi \in H_f^1(\mathbb{R}^6) \right\}$$

$$\mathcal{F}_{\alpha}(u) = F_0^{\lambda}(u - \mathcal{G}^{\lambda}\xi) - \lambda \|u\|^2 + 2\Big(\Phi_D^{\lambda}(\xi) + \Phi_N^{\lambda}(\xi) + \alpha \|\xi\|^2\Big)$$

where

$$\lambda > 0$$

$$\begin{split} F_0^{\lambda}(u - \mathcal{G}^{\lambda} \xi) &= \int \!\! d\mathbf{k}_1 d\mathbf{k}_2 \, (\mathbf{k}_1^2 + \mathbf{k}_2^2 + \frac{2}{m+1} \mathbf{k}_1 \cdot \mathbf{k}_2 + \lambda) |\widehat{u - \mathcal{G}^{\lambda}} \xi|^2 \\ \Phi_D^{\lambda}(\xi) &= 2\pi^2 \int \!\! d\mathbf{p} \, \sqrt{\frac{m(m+2)}{(m+1)^2} \mathbf{p}^2 + \lambda} \, |\widehat{\xi}(\mathbf{p})|^2 \\ \Phi_N^{\lambda}(\xi) &= \int \!\! d\mathbf{p} d\mathbf{q} \, \frac{\widehat{\xi}^*(\mathbf{p}) \xi(\mathbf{q})}{\mathbf{p}^2 + \mathbf{q}^2 + \frac{2}{m+1} \mathbf{p} \cdot \mathbf{q} + \lambda} \end{split}$$

 $\alpha \in \mathbb{R} \quad \text{ strength of interaction}$

 F_0^{λ} contribution of the reg. part $u-\mathcal{G}^{\lambda}\xi$ (positive) Φ_D^{λ} diag. contribution of the sing. part $\mathcal{G}^{\lambda}\xi$ (positive) Φ_N^{λ} non-diag. contribution of the sing. part $\mathcal{G}^{\lambda}\xi$ (not definite in sign)

Lower bound for \mathcal{F}_{α}

Crucial point, also for closure of \mathcal{F}_{α}

$$\begin{split} \mathcal{F}_{\alpha}(u) &= F_0^{\lambda}(u - \mathcal{G}^{\lambda}\xi) - \lambda \|u\|^2 + 2\Big(\Phi_D^{\lambda}(\xi) + \Phi_N^{\lambda}(\xi) + \alpha \|\xi\|^2\Big) \\ &\geq -\lambda \|u\|^2 + 2\Big(\Phi_D^{\lambda}(\xi) + \Phi_N^{\lambda}(\xi) + \alpha \|\xi\|^2\Big) \end{split}$$

If $\Phi_N^{\lambda}(\xi) \ge -\Lambda \Phi_D^{\lambda}(\xi)$, with $0 < \Lambda < 1$, one easily obtains

$$\geq -\lambda \|u\|^2 + 2\left((1-\Lambda)\Phi_D^{\lambda}(\xi) + \alpha \|\xi\|^2\right)$$

$$\equiv -\lambda \|u\|^2 + 2\int d\mathbf{p} \left((1-\Lambda) 2\pi^2 \sqrt{\frac{m(m+2)}{(m+1)^2} \mathbf{p}^2 + \lambda} + \alpha\right) |\hat{\xi}(\mathbf{p})|^2$$

Therefore

If
$$\alpha \geq$$
 0 then lower bound = 0
If $\alpha <$ 0 then lower bound = $-\frac{\alpha^2}{4\pi^4(1-\Lambda)^2}$

Estimate $\Phi_N^{\lambda}(\xi) \geq -\Lambda \; \Phi_D^{\lambda}(\xi)$, with $\Lambda < 1$ if $m > m^*(2)$

Main steps of the (elementary) proof

$$\Phi_{\mathcal{N}}^{\lambda}(\xi) = \int\!\!d\mathbf{p}d\mathbf{q}\; rac{\hat{\xi}^*(\mathbf{p})\xi(\mathbf{q})}{\mathbf{p}^2 + \mathbf{q}^2 + rac{2}{m+1}\mathbf{p}\cdot\mathbf{q} + \lambda}$$

exp. in spherical harmonics $\hat{\xi}(\mathbf{p}) = \sum_{lm} \xi_{lm}(p) Y_l^m(\theta, \phi)$

$$=2\pi\sum_{lm}\int_{0}^{\infty}\int_{0}^{\infty}\int_{0}^{\infty}p^{2}\xi_{lm}^{*}(p)q^{2}\xi_{lm}(q)\int_{-1}^{1}\frac{P_{l}(y)}{p^{2}+q^{2}+\frac{2}{m+1}pqy+\lambda}$$

positivity for I even (fermions)

$$\geq 2\pi \sum_{lm,l,odd} \int_{0}^{\infty} \int_{0}^{\infty} \int_{0}^{\infty} dq \, p^{2} \xi_{lm}^{*}(p) q^{2} \xi_{lm}(q) \int_{-1}^{1} \frac{P_{l}(y)}{p^{2} + q^{2} + \frac{2}{m+1} pq \, y + \lambda}$$

terms with I odd increasing in λ

$$\geq 2\pi \sum_{lm,l \text{ odd}} \int_0^\infty \int_0^\infty dq \, p^2 \xi_{lm}^*(p) q^2 \xi_{lm}(q) \int_{-1}^1 \frac{P_l(y)}{p^2 + q^2 + \frac{2}{m+1} pq \, y}$$

diagon. via Mellin transform

$$= \sum_{lm,l \text{ odd}} \int \!\! dk \, S_l(k) |\xi_{lm}^{\sharp}(k)|^2, \quad \xi_{lm}^{\sharp}(k) = \frac{1}{\sqrt{2\pi}} \int \!\! dx \, e^{-ikx} e^{2x} \xi_{lm}(e^x)$$

for any I odd $S_{I}(k) \geq S_{1}(0)$, and $S_{1}(0) < 0$

$$\geq -|S_1(0)| \sum_{lm \ l \ odd} \int dk \ |\xi_{lm}^{\sharp}(k)|^2$$

inverse transform

$$= -|S_1(0)| \sum_{lm \ l \ odd} \int_0^\infty \!\!\! dp \ p^3 |\xi_{lm}(p)|^2$$

def.
$$\Lambda = |S_1(0)|(m+1)\big(2\pi^2\sqrt{m(m+2)}\big)^{-1}$$
 and add λ

$$\geq -\Lambda \sum_{lm\,l\,odd} 2\pi^2 \int_0^\infty \!\!\! dp \, p^2 \sqrt{rac{m(m+2)}{(m+1)^2}} p^2 + \lambda \; |\xi_{lm}(p)|^2$$

add terms with I even and sum on I, m

$$\geq -\Lambda \; \Phi_D^\lambda(\xi), \;\;\; ext{ and } \; \Lambda < 1 \; ext{ if } \; m > m^*(2)$$