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System of n quantum particles in RY, d = 1,2, 3, interacting via a
zero-range, two-body interaction. Formally

n

1 n
H=— Z 27m,-Ax" + Z pij 6(xi — x;),
i=1 ij=1
i<j
where x; € RY, | = 1,...,n, m; is the mass, Ay, is the Laplacian
relative to x;, and pj; € R. We set h = 1.

Original physical motivation in Nuclear Physics. More recently,
relevant in the analysis of ultra-cold quantum gases.
Here it is "experimentally realized” the unitary limit

a — 0o, rn—20

a scattering length, ry effective range
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General problem: rigorous construction of H as self-adjoint and,
possibly, bounded from below operator in L2(R"9)

1. Definition
Notice: Ht) = Hotp if ¢ vanishes on each hyperplane {x; = x;}

Then consider
Ho= -1 550, D(Ho) = G(R™\ Ujcj{x; = x;})

Ho is symmetric but not self-adjoint. One (trivial) self-adjoint
extension is the free Hamiltonian.

By definition, any other self-adjoint extension of H is a
Hamiltonian of n quantum particles in RY with zero-range
interactions.

2. Explicit construction

More delicate and strongly dependent on the dimension d.
Each self-adjoint extension of Hy is characterized by a
(generalized) boundary condition on each hyperplane {x; = x;}.
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For d = 3,n = 2, in the relative coordinate x
H= iA + 0(x)
S 2m

the entire class of self-adjoint extensions of Hg can be constructed.

The domain of each extension consists of functions

1 € H2(R3\ {0}) satisfying the boundary condition at the origin
w(x):%—kaq—ko(l), for x| =0, geC,aeR

For d = 3,n > 2, by analogy, one takes the

Skornyakov-Ter-Martirosyan (STM) extension H,,

defined on H?(R3"\ Uj<;{x; = x;}) and s.t.

[xj — Xj]

(X1, ...y Xn) +agqgj+o(1l), for |xi—~xj|—0, a€cR

gjj functions on {x; = x;} and « strength of the interaction
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As a matter of fact, in general
STM extension H, is symmetric but not self-adjoint.

For three identical bosons and for three different particles, any
self-adjoint extension of STM is unbounded from below
(sequence of eigenvalues Ex — —0o0)

Faddeev, Minlos (1962); Melnikov, Minlos (1991)

Instability known as Thomas effect
Remark: Thomas effect can be avoided introducing " non local”

boundary conditions (e.g. choosing « as integral operator)
Albeverio, Hoegh-Krohn, Streit (1977); Frank, Seiringer (2012)
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System of fermions

Thomas effect could not occur if the Hilbert space is suitably
restricted (symmetry constraint)

Indeed, for a system of identical fermions the zero-range
interaction is ineffective

Open problem: stability or occurrence of Thomas effect for a
system composed by a mixture of two different species of fermions.
The answer depends on m (mass ratio), N, M (number of
fermions).

Partial results only in the case of N fermions (of mass = 1) plus
one particle of mass m
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Physical literature

- case 2+ 1 (Efimov (1972),(1973); Petrov (2003))
There is a critical mass m*(2) ~ 0.0735 s.t.

m < m*(2) three-body bound states of energy — —oo
m > m*(2) boundedness from below

- case 3 + 1 (Castin, Mora, Pricoupenko (2010))
m*(2) < m < 0.0747 four-body bound states of energy — —o0

Rigorous results

- case 2+ 1 (Shermatov (2003); Minlos (2011))

For m < m*(2) STM extension (restricted to / = 1) is not
self-adjoint and all its self-adjoint extensions are unbounded from
below (Thomas)

- case N + 1 (Minlos (2011))
For N < 5 and m suff. large STM extension is self-adjoint
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We consider a system of N fermions (of mass = 1) plus a different
particle (of mass m),

we construct, via renormalization procedure
(Dell’ Antonio, Figari,T. (1994)), the quadratic form F,, naturally

associated with the STM extension H,,

Folu) = (u, Hou) for u e D(H,),

we define m*(N) as the unique solution (for N fixed) of

A(m, N) := 27 1 (N=1)(m+1)?

e ()] =
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A(m, N) > 0, decreases with m,
limm—o A(m, N) = o0, limpn_0o A(m,N) =0

therefore

m*(N) > 0, increases with N, for N = 2 reduces to m*(2) and
A(m, N) < 1iff m > m*(N)

/\(‘"‘)‘h \\ ~ ,\&ﬁ

N P\XED

A ,___,_,,,___k.k:,,,,
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and we prove
Th. 1 (stability)

If N>2and m > m*(N) then F, is closed and bounded from
below. In particular F, is

- positive for o > 0 and

- bounded below by —W for oo < 0.

This implies:

If N>2and m > m*(N) then the STM extension H, is
self-adjoint and bounded from below. In particular H,, is
- positive for o > 0 and

-info(Hy) > 5 for o < 0.

a2
T 474 (1—A(m,N))
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Th. 2 (instability)
If N >2and m < m*(2) then F, is unbounded from below for any
aeR.

This suggests that Thomas effect occurs.

Sequence of trial functions s.t. Fo(up) — —oo for N = 2,

then the sequence is adapted to the case N > 2, with N — 2
fermions sufficiently far away.
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Optimal result for N = 2
Partial result for N > 2

e.g. by numerical simul., the case m = 1 seems stable for any N.

The role of the antisymmetry must be more carefully taken into
account

N=2
0 INSTABALITY ) STARLITY v
N>Z
0 NSTABILITY M;'(l) SAP a¥(N)  STABILITY M
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Case 2 + 1: the quadratic form F,

Coord. x1,x» and xg, C.M. frame, rel. coord. y; = x; — Xp,
y2 = x2 — xo (— ki, k2), Hilbert space L%(IR®).

The interaction is not a small form perturbation of the free Ham.
Formal energy form + renorm. procedure — F,(u) = (u, Hou).
Domain strictly larger than H(R®). One has to add

£(k1) — &(k2)

e H/*(R
k%—l—k% ki-ko + A ¢ ( )

g\)\S(kla k2) =

m+1

Def.

D(Fa) = {u € L(RY)| 3¢ € H2(R) s.t. u— G¢ € HER®) )

Falw) = R (u=G€) = Nl +2(@(€) + OX(€) + alé]?)
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where
A>0
2 —
Fo(u—GY¢) = /dkldk2 (k3 + k3 + . 1k1 ko + N)|u— G

®3(6) = 21 Jdp \/ ’(’mpz )P

£ (p)é(a)
P2+ Q>+ 2ip-q+ A

o () = /dpdq

a € R strength of interaction

Fg\ contribution of the reg. part u — G*¢ (positive)
®7, diag. contribution of the sing. part G*¢ (positive)
CD;\V non-diag. contribution of the sing. part G*¢ (not definite in sign)
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Lower bound for F,

Crucial point, also for closure of F,
Falu) = R} (u=0*¢) = Allul® + 2(@3(¢) + O} (€) + all¢ )
> —Alul? +2(@B() + Op(E) + all¢]?)

If (€)= —A ®3(€), with 0 < A < 1, one easily obtains

> = AllulP +2((1 = N9B(E) + allel)

= —)\Hu||2+2/dp ((1—/\) 27r2\/(r(n”:f1)2) 242 +a>\§( )2

Therefore

If «« > 0 then lower bound = 0 ,

If @ < 0 then lower bound = —4”4(‘;‘7_/\)2
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Estimate &3, (&) > —A ®3(€), with A < 1 if m > m*(2)

Main steps of the (elementary) proof

B 5*(p)§(<1)
_/dpdq p>+q°+ erlp q+A

exp. in spherical harmonics £(p Zflm ,0)

P
_QWZ/dp/dquﬁlm p)a flm(q)/y P21 +I( )pqy+)\
m—+1

positivity for / even (fermions)

>2r Y /dp/dquélm P)a*Em(q )/ il

2
Im,l odd +q° +m+1pqy+/\

terms with / odd increasing in A

>2r Y /dp /dquﬁlm P)q*Eim(q) / Fily)

Y 2
Im, ] odd +q? +m+1qu
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diagon. via Mellin transform

B # 2 # —
;n%d /dk SRk, Ei(k) ==

for any / odd  S;(k) > 51(0), and $1(0) <0
> 1510 Y fakiéh, (WP

Im,l odd
inverse transform

— 150 ¥ [ dran(e)l

Im,l odd

def. A =[S1(0)|(m + 1)(27%/m(m +2)) " and add A
>N Y 27T2/Oodop p2\/rmp2 + X &m(p)[?

Im,l odd
add terms with / even and sum on I, m

> A Op(€), and A< 1 if m>m*(2)

1 .
/dX ef/kxe2xglm(ex)




	Introduction
	System of fermions
	Results
	Idea of stability proof

