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Introduction

System of n quantum particles in Rd , d = 1, 2, 3, interacting via a
zero-range, two-body interaction. Formally

H = −
n∑

i=1

1

2mi
∆xi +

n∑
i ,j=1

i<j

µij δ(xi − xj),

where xi ∈ Rd , i = 1, . . . , n, mi is the mass, ∆xi is the Laplacian
relative to xi , and µij ∈ R. We set ~ = 1.

Original physical motivation in Nuclear Physics. More recently,
relevant in the analysis of ultra-cold quantum gases.
Here it is ”experimentally realized” the unitary limit

a→∞, r0 → 0

a scattering length, r0 effective range
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General problem: rigorous construction of H as self-adjoint and,
possibly, bounded from below operator in L2(Rnd)

1. Definition
Notice: Hψ = H0ψ if ψ vanishes on each hyperplane {xi = xj}

Then consider

Ḣ0 = −
∑n

i=1
1

2mi
∆xi , D(Ḣ0) = C∞0 (Rnd \ ∪i<j{xi = xj})

Ḣ0 is symmetric but not self-adjoint. One (trivial) self-adjoint
extension is the free Hamiltonian.

By definition, any other self-adjoint extension of Ḣ0 is a
Hamiltonian of n quantum particles in Rd with zero-range
interactions.

2. Explicit construction
More delicate and strongly dependent on the dimension d .
Each self-adjoint extension of Ḣ0 is characterized by a
(generalized) boundary condition on each hyperplane {xi = xj}.
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For d = 3, n = 2, in the relative coordinate x

H =
1

2m
∆x + δ(x)

the entire class of self-adjoint extensions of Ḣ0 can be constructed.
The domain of each extension consists of functions
ψ ∈ H2(R3 \ {0}) satisfying the boundary condition at the origin

ψ(x) =
q

|x|
+ αq + o(1), for |x| → 0, q ∈ C, α ∈ R

For d = 3, n > 2, by analogy, one takes the
Skornyakov-Ter-Martirosyan (STM) extension Hα,
defined on H2(R3n \ ∪i<j{xi = xj}) and s.t.

ψ(x1, . . . , xn)=
qij

|xi − xj |
+αqij +o(1), for |xi−xj | → 0, α ∈ R

qij functions on {xi = xj} and α strength of the interaction
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As a matter of fact, in general
STM extension Hα is symmetric but not self-adjoint.

For three identical bosons and for three different particles, any
self-adjoint extension of STM is unbounded from below
(sequence of eigenvalues Ek → −∞)
Faddeev, Minlos (1962); Melnikov, Minlos (1991)

Instability known as Thomas effect

Remark: Thomas effect can be avoided introducing ”non local”
boundary conditions (e.g. choosing α as integral operator)
Albeverio, Hoegh-Krohn, Streit (1977); Frank, Seiringer (2012)
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System of fermions

Thomas effect could not occur if the Hilbert space is suitably
restricted (symmetry constraint)

Indeed, for a system of identical fermions the zero-range
interaction is ineffective

Open problem: stability or occurrence of Thomas effect for a
system composed by a mixture of two different species of fermions.
The answer depends on m (mass ratio), N, M (number of
fermions).

Partial results only in the case of N fermions (of mass = 1) plus
one particle of mass m
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Physical literature

- case 2 + 1 (Efimov (1972),(1973); Petrov (2003))
There is a critical mass m∗(2) ' 0.0735 s.t.
m < m∗(2) three-body bound states of energy → −∞
m > m∗(2) boundedness from below

- case 3 + 1 (Castin, Mora, Pricoupenko (2010))
m∗(2) < m < 0.0747 four-body bound states of energy → −∞

Rigorous results

- case 2 + 1 (Shermatov (2003); Minlos (2011))
For m < m∗(2) STM extension (restricted to l = 1) is not
self-adjoint and all its self-adjoint extensions are unbounded from
below (Thomas)

- case N + 1 (Minlos (2011))
For N < 5 and m suff. large STM extension is self-adjoint
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Results

We consider a system of N fermions (of mass = 1) plus a different
particle (of mass m),

we construct, via renormalization procedure
(Dell’Antonio, Figari,T. (1994)), the quadratic form Fα, naturally
associated with the STM extension Hα

Fα(u) = (u,Hαu) for u ∈ D(Hα),

we define m∗(N) as the unique solution (for N fixed) of

Λ(m,N) := 2π−1(N−1)(m+1)2

[
1√

m(m + 2)
−arcsin

(
1

m + 1

)]
= 1
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Λ(m,N) > 0, decreases with m,
limm→0 Λ(m,N) =∞, limm→∞ Λ(m,N) = 0

therefore

m∗(N) > 0, increases with N, for N = 2 reduces to m∗(2) and
Λ(m,N) < 1 iff m > m∗(N)
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and we prove

Th. 1 (stability)

If N ≥ 2 and m > m∗(N) then Fα is closed and bounded from
below. In particular Fα is
- positive for α ≥ 0 and
- bounded below by − α2

4π4(1−Λ(m,N))2 for α < 0.

This implies:

If N ≥ 2 and m > m∗(N) then the STM extension Hα is
self-adjoint and bounded from below. In particular Hα is
- positive for α ≥ 0 and
- inf σ(Hα) ≥ − α2

4π4(1−Λ(m,N))2 for α < 0.
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Th. 2 (instability)

If N ≥ 2 and m < m∗(2) then Fα is unbounded from below for any
α ∈ R.

This suggests that Thomas effect occurs.

Sequence of trial functions s.t. Fα(un)→ −∞ for N = 2,

then the sequence is adapted to the case N > 2, with N − 2
fermions sufficiently far away.
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Optimal result for N = 2

Partial result for N > 2

e.g. by numerical simul., the case m = 1 seems stable for any N.

The role of the antisymmetry must be more carefully taken into
account
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Case 2 + 1: the quadratic form Fα
Coord. x1, x2 and x0, C.M. frame, rel. coord. y1 = x1 − x0,
y2 = x2 − x0 (→ k1, k2), Hilbert space L2

f (R6).

The interaction is not a small form perturbation of the free Ham.

Formal energy form + renorm. procedure → Fα(u) = (u,Hαu).

Domain strictly larger than H1
f (R6). One has to add

Ĝλξ(k1, k2) =
ξ̂(k1)− ξ̂(k2)

k2
1 + k2

2 + 2
m+1 k1 · k2 + λ

ξ ∈ H
1/2
f (R3)

Def.

D(Fα) =
{

u ∈ L2
f (R6) | ∃ξ ∈ H

1/2
f (R3) s.t. u − Gλξ ∈ H1

f (R6)
}

Fα(u) = Fλ0 (u−Gλξ)− λ‖u‖2 + 2
(

Φλ
D(ξ) + Φλ

N(ξ) + α‖ξ‖2
)
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where

λ > 0

Fλ0 (u−Gλξ) =

∫
dk1dk2 (k2

1 + k2
2 +

2

m + 1
k1 · k2 + λ)| ̂u − Gλξ|2

Φλ
D(ξ) = 2π2

∫
dp

√
m(m + 2)

(m + 1)2
p2 + λ |ξ̂(p)|2

Φλ
N(ξ) =

∫
dpdq

ξ̂∗(p)ξ(q)

p2 + q2 + 2
m+1p · q + λ

α ∈ R strength of interaction

Fλ0 contribution of the reg. part u − Gλξ (positive)
Φλ

D diag. contribution of the sing. part Gλξ (positive)
Φλ

N non-diag. contribution of the sing. part Gλξ (not definite in sign)
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Lower bound for Fα
Crucial point, also for closure of Fα

Fα(u) = Fλ0 (u−Gλξ)− λ‖u‖2 + 2
(

Φλ
D(ξ) + Φλ

N(ξ) + α‖ξ‖2
)

≥ −λ‖u‖2 + 2
(

Φλ
D(ξ) + Φλ

N(ξ) + α‖ξ‖2
)

If Φλ
N(ξ) ≥ −Λ Φλ

D(ξ), with 0 < Λ < 1, one easily obtains

≥ −λ‖u‖2 + 2
(

(1− Λ)Φλ
D(ξ) + α‖ξ‖2

)
≡ −λ‖u‖2 + 2

∫
dp

(
(1− Λ) 2π2

√
m(m + 2)

(m + 1)2
p2 + λ + α

)
|ξ̂(p)|2

Therefore

If α ≥ 0 then lower bound = 0
If α < 0 then lower bound = − α2

4π4(1−Λ)2
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Estimate Φλ
N(ξ) ≥ −Λ Φλ

D(ξ), with Λ < 1 if m > m∗(2)

Main steps of the (elementary) proof

Φλ
N(ξ) =

∫
dpdq

ξ̂∗(p)ξ(q)

p2 + q2 + 2
m+1p · q + λ

exp. in spherical harmonics ξ̂(p) =
∑
lm

ξlm(p)Y m
l (θ, φ)

= 2π
∑
lm

∫ ∞
0
dp

∫ ∞
0
dq p2ξ∗lm(p)q2ξlm(q)

∫ 1

−1
dy

Pl(y)

p2+q2+ 2
m+1pq y +λ

positivity for l even (fermions)

≥ 2π
∑

lm,l odd

∫ ∞
0
dp

∫ ∞
0
dq p2ξ∗lm(p)q2ξlm(q)

∫ 1

−1
dy

Pl(y)

p2+q2+ 2
m+1pq y +λ

terms with l odd increasing in λ

≥ 2π
∑

lm,l odd

∫ ∞
0
dp

∫ ∞
0
dq p2ξ∗lm(p)q2ξlm(q)

∫ 1

−1
dy

Pl(y)

p2+q2+ 2
m+1pq y



Introduction System of fermions Results Idea of stability proof

diagon. via Mellin transform

=
∑

lm,l odd

∫
dk Sl(k)|ξ]lm(k)|2, ξ]lm(k)=

1√
2π

∫
dx e−ikxe2xξlm(ex)

for any l odd Sl(k) ≥ S1(0), and S1(0) < 0

≥ −|S1(0)|
∑

lm,l odd

∫
dk |ξ]lm(k)|2

inverse transform

= −|S1(0)|
∑

lm,l odd

∫ ∞
0
dp p3|ξlm(p)|2

def. Λ = |S1(0)|(m + 1)
(
2π2
√

m(m + 2)
)−1

and add λ

≥ −Λ
∑

lm,l odd

2π2

∫ ∞
0
dp p2

√
m(m + 2)

(m + 1)2
p2 + λ |ξlm(p)|2

add terms with l even and sum on l ,m

≥ −Λ Φλ
D(ξ), and Λ < 1 if m > m∗(2)
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