Papangelou processes and inductive probabilities

Mathias Rafler, TU München joint work with Hans Zessin

Yerevan, Sept. 4, 2012

The setting Describing random point configurations

The setting Describing random point configurations

 μ

- realize points one by one
- inductive rule $\pi: \mu \mapsto \pi_{\mu}$
 - symmetry condition
 - integrability condition
 - ullet $\pi_{\mu}(B)$ expected number of points in B given μ

Question

- realize points one by one
- inductive rule $\pi: \mu \mapsto \pi_{\mu}$
 - symmetry condition
 - integrability condition
 - $\pi_{\mu}(B)$ expected number of points in B given μ

Question

- realize points one by one
- inductive rule $\pi: \mu \mapsto \pi_{\mu}$
 - symmetry condition
 - integrability condition
 - $\pi_{\mu}(B)$ expected number of points in B given μ

Question

- realize points one by one
- inductive rule $\pi: \mu \mapsto \pi_{\mu}$
 - symmetry condition
 - integrability condition
 - $\pi_{\mu}(B)$ expected number of points in B given μ

Question

- realize points one by one
- inductive rule $\pi: \mu \mapsto \pi_{\mu}$
 - symmetry condition
 - integrability condition
 - $\pi_{\mu}(B)$ expected number of points in B given μ

Question

- realize points one by one
- inductive rule $\pi: \mu \mapsto \pi_{\mu}$
 - symmetry condition
 - integrability condition
 - $\pi_{\mu}(B)$ expected number of points in B given μ

Question

Historical remarks

- observation X_1, \ldots, X_N with permutation invariant joint law
- infer on law of X_{N+1} given X_1, \ldots, X_N
- W. Johnson (\sim 1924), R. Carnap (\sim 1950)

$$(\mathcal{J}) \qquad \mathbb{P}(X_{N+1} = j | X_1, \dots, X_N) = f_j(n_j)$$

Böge (∼ 1970)

$$(\mathcal{B}) \qquad \frac{\mathbb{P}(\varphi(X_{N+1}) = i | X_1, \dots, X_N)}{= \mathbb{P}(\varphi(X_{N+1}) = i | \varphi(X_1), \dots, \varphi(X_N))}$$

$$\mathbb{P}(X_{N+1} = j | X_1, \dots, X_N) = \frac{a_j + bn_j}{A + bN}$$

Historical remarks

- observation X_1, \ldots, X_N with permutation invariant joint law
- infer on law of X_{N+1} given X_1, \ldots, X_N
- W. Johnson (\sim 1924), R. Carnap (\sim 1950)

$$(\mathcal{J}) \qquad \mathbb{P}(X_{N+1} = j | X_1, \dots, X_N) = f_j(n_j)$$

Böge (∼ 1970)

$$(\mathcal{B}) \qquad \frac{\mathbb{P}(\varphi(X_{N+1}) = i | X_1, \dots, X_N)}{= \mathbb{P}(\varphi(X_{N+1}) = i | \varphi(X_1), \dots, \varphi(X_N))}$$

$$\mathbb{P}(X_{N+1} = j | X_1, \dots, X_N) = \frac{a_j + b n_j}{A + b N}$$

Historical remarks

- observation X_1, \ldots, X_N with permutation invariant joint law
- infer on law of X_{N+1} given X_1, \ldots, X_N
- W. Johnson (\sim 1924), R. Carnap (\sim 1950)

$$(\mathcal{J}) \qquad \mathbb{P}(X_{N+1} = j | X_1, \dots, X_N) = f_j(n_j)$$

Böge (∼ 1970)

$$(\mathcal{B}) \qquad \frac{\mathbb{P}(\varphi(X_{N+1}) = i | X_1, \dots, X_N)}{= \mathbb{P}(\varphi(X_{N+1}) = i | \varphi(X_1), \dots, \varphi(X_N))}$$

$$\mathbb{P}(X_{N+1} = j | X_1, \dots, X_N) = \frac{a_j + b n_j}{A + b N}$$

Historical remarks

- observation X_1, \ldots, X_N with permutation invariant joint law
- infer on law of X_{N+1} given X_1, \ldots, X_N
- W. Johnson (\sim 1924), R. Carnap (\sim 1950)

$$(\mathcal{J}) \qquad \mathbb{P}(X_{N+1} = j | X_1, \dots, X_N) = f_j(n_j)$$

Böge (∼ 1970)

$$(\mathcal{B}) \qquad \frac{\mathbb{P}(\varphi(X_{N+1}) = i | X_1, \dots, X_N)}{= \mathbb{P}(\varphi(X_{N+1}) = i | \varphi(X_1), \dots, \varphi(X_N))}$$

$$\mathbb{P}(X_{N+1}=j|X_1,\ldots,X_N)=\frac{a_j+bn_j}{A+bN}$$

assume π is a kernel such that for $\mu \mapsto \pi_{\mu}$,

$$(\mathcal{N}) \qquad \mathbf{1}_{\{y\}^c} \pi_{\mu + \delta_y} = \mathbf{1}_{\{y\}^c} \pi_{\mu}$$

(S) space contains at least 3 elements

Linear Reinforcement (Zessin, R. 12)

Given (\mathcal{N}) and (\mathcal{S}) ,

$$\pi_{\mu}(\mathrm{d}x) = \rho(\mathrm{d}x) + c(x)\mu(\mathrm{d}x) \tag{1}$$

Sufficiency for singletons (Zessin, R. 12)

$$(\mathcal{J})$$
 $\mu \mapsto \pi_{\mu}(\{x\})$ is $\sigma(N_{\{x\}})$ -measurable for all x

assume π is a kernel such that for $\mu \mapsto \pi_{\mu}$,

$$(\mathcal{N})$$
 $1_{\{y\}^c}\pi_{\mu+\delta_y}=1_{\{y\}^c}\pi_{\mu}$

$$(S)$$
 space contains at least 3 elements

Linear Reinforcement (Zessin, R. 12)

Given (\mathcal{N}) and (\mathcal{S}) ,

$$\pi_{\mu}(\mathrm{d}x) = \rho(\mathrm{d}x) + c(x)\mu(\mathrm{d}x) \tag{1}$$

Sufficiency for singletons (Zessin, R. 12)

$$(\mathcal{J})$$
 $\mu \mapsto \pi_{\mu}(\{x\})$ is $\sigma(N_{\{x\}})$ -measurable for all x

assume π is a kernel such that for $\mu \mapsto \pi_{\mu}$,

$$(\mathcal{N}) \qquad 1_{\{y\}^c} \pi_{\mu + \delta_y} = 1_{\{y\}^c} \pi_{\mu}$$

(S) space contains at least 3 elements

Linear Reinforcement (Zessin, R. 12)

Given (\mathcal{N}) and (\mathcal{S}) ,

$$\pi_{\mu}(\mathrm{d}x) = \rho(\mathrm{d}x) + c(x)\mu(\mathrm{d}x) \tag{1}$$

Sufficiency for singletons (Zessin, R. 12)

$$(\mathcal{J})$$
 $\mu \mapsto \pi_{\mu}(\{x\})$ is $\sigma(N_{\{x\}})$ -measurable for all x

assume π is a kernel such that for $\mu \mapsto \pi_{\mu}$,

$$(\mathcal{N})$$
 $1_{\{y\}^c}\pi_{\mu+\delta_y}=1_{\{y\}^c}\pi_{\mu}$

(S) space contains at least 3 elements

Linear Reinforcement (Zessin, R. 12)

Given (\mathcal{N}) and (\mathcal{S}) ,

$$\pi_{\mu}(\mathrm{d}x) = \rho(\mathrm{d}x) + c(x)\mu(\mathrm{d}x) \tag{1}$$

Sufficiency for singletons (Zessin, R. 12)

$$(\mathcal{J})$$
 $\mu \mapsto \pi_{\mu}(\{x\})$ is $\sigma(N_{\{x\}})$ -measurable for all x

Intermezzo: Existence and state space transformations

Existence (Zessin 09; Nehring, Zessin 11)

If $c(x) \in [0,1)$ or if c(x) < 0 and $-\frac{\rho(\{x\})}{c(x)} \in \mathbb{N}$, then there exists a unique point process P such that

$$C_{\mathsf{P}}(h) = \iint h(x, \mu + \delta_x) \pi_{\mu}(\mathrm{d}x) \mathsf{P}(\mathrm{d}\mu). \tag{2}$$

Assume $G: X \to Y$ is a state space transformation s.th. GP is a point process

State space transformation

If $G\mu_1=G\mu_2$ implies $\pi_{\mu_1}\circ G=\pi_{\mu_2}\circ G$ for an admissable G, then GP satisfies (2) with π_μ replaced by $\pi'_\nu=\pi_\mu\circ G$ for μ such that $G\mu=\nu$.

Intermezzo: Existence and state space transformations

Existence (Zessin 09; Nehring, Zessin 11)

If $c(x) \in [0,1)$ or if c(x) < 0 and $-\frac{\rho(\{x\})}{c(x)} \in \mathbb{N}$, then there exists a unique point process P such that

$$C_{\mathsf{P}}(h) = \iint h(x, \mu + \delta_x) \pi_{\mu}(\mathrm{d}x) \mathsf{P}(\mathrm{d}\mu). \tag{2}$$

Assume $G: X \to Y$ is a state space transformation s.th. GP is a point process

State space transformation

If $G\mu_1=G\mu_2$ implies $\pi_{\mu_1}\circ G=\pi_{\mu_2}\circ G$ for an admissable G, then GP satisfies (2) with π_μ replaced by $\pi'_\nu=\pi_\mu\circ G$ for μ such that $G\mu=\nu$.

Intermezzo: Existence and state space transformations

Existence (Zessin 09; Nehring, Zessin 11)

If $c(x) \in [0,1)$ or if c(x) < 0 and $-\frac{\rho(\{x\})}{c(x)} \in \mathbb{N}$, then there exists a unique point process P such that

$$C_{\mathsf{P}}(h) = \iint h(x, \mu + \delta_x) \pi_{\mu}(\mathrm{d}x) \mathsf{P}(\mathrm{d}\mu). \tag{2}$$

Assume $G: X \to Y$ is a state space transformation s.th. GP is a point process

State space transformation

If $G\mu_1=G\mu_2$ implies $\pi_{\mu_1}\circ G=\pi_{\mu_2}\circ G$ for an admissable G, then GP satisfies (2) with π_μ replaced by $\pi'_\nu=\pi_\mu\circ G$ for μ such that $G\mu=\nu$.

Characterization Equivalences

Question

What happens if π is stable under a huge class of admissable state space transformations?

Stability and sufficiency (Zessin, R. 12)

Assume that there exists P for kernel π and (S). Then the following statements are equivalent

- 1 $\pi_{\mu}(\mathrm{d}x) = \rho(\mathrm{d}x) + c\mu(\mathrm{d}x)$ for some c < 1,
- ② (\mathcal{N}) and $x \mapsto \pi_{\delta_x}(\{x\}) \pi_0(\{x\})$ is constant,
- 3 $\pi(B)$ is $\sigma(N_B)$ -measurable for all closed B
- 4 π is stable under all continuous state space transformations

Characterization Equivalences

Question

What happens if π is stable under a huge class of admissable state space transformations?

Stability and sufficiency (Zessin, R. 12)

Assume that there exists P for kernel π and (S). Then the following statements are equivalent

- 2 (\mathcal{N}) and $x \mapsto \pi_{\delta_x}(\{x\}) \pi_0(\{x\})$ is constant,
- 3 $\pi(B)$ is $\sigma(N_B)$ -measurable for all closed B,
- $oldsymbol{4}$ π is stable under all continuous state space transformations

Remarks and Examples

- 1 two versions of the sufficiency postulate yield basically same structure, but differences in detail
- Examples (Bach, Zessin)
 - MB statistics: $\pi_{\mu}(\mathrm{d}x) = c(x)\rho(\mathrm{d}x)$
 - BE/FD statisites: $\pi_{\mu}(\mathrm{d}x) = c(x)[\rho \pm \mu](\mathrm{d}x)$
- 3 add interactions: $1_{\{y\}^c}\pi_{\mu+\delta_y}=f(\,\cdot\,,y)1_{\{y\}^c}\pi_{\mu}$

$$\pi_{\mu}(\mathrm{d}x) = V_{\mu}(x) \left[\rho(\mathrm{d}x) + c(x)\mu(\mathrm{d}x) \right]$$

Remarks and Examples

- 1 two versions of the sufficiency postulate yield basically same structure, but differences in detail
- 2 Examples (Bach, Zessin)
 - MB statistics: $\pi_{\mu}(\mathrm{d}x) = c(x)\rho(\mathrm{d}x)$
 - BE/FD statisitcs: $\pi_{\mu}(\mathrm{d}x) = c(x)[\rho \pm \mu](\mathrm{d}x)$
- 3 add interactions: $1_{\{y\}^c}\pi_{\mu+\delta_y}=f(\,\cdot\,,y)1_{\{y\}^c}\pi_{\mu}$

$$\pi_{\mu}(\mathrm{d}x) = V_{\mu}(x) \left[\rho(\mathrm{d}x) + c(x)\mu(\mathrm{d}x) \right]$$

Remarks and Examples

- 1 two versions of the sufficiency postulate yield basically same structure, but differences in detail
- 2 Examples (Bach, Zessin)
 - MB statistics: $\pi_{\mu}(\mathrm{d}x) = c(x)\rho(\mathrm{d}x)$
 - BE/FD statisites: $\pi_{\mu}(\mathrm{d}x) = c(x)[\rho \pm \mu](\mathrm{d}x)$
- 3 add interactions: $1_{\{y\}^c}\pi_{\mu+\delta_y}=f(\cdot,y)1_{\{y\}^c}\pi_{\mu}$

$$\pi_{\mu}(\mathrm{d}x) = V_{\mu}(x) \big[\rho(\mathrm{d}x) + c(x)\mu(\mathrm{d}x) \big]$$