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The setting

Papangelou kernels

e realize points one by one
e inductive rule 7 : p — 7,

e symmetry condition
e integrability condition
o 7,(B) expected number of points in B given

Question
What is the structure of 7 under one additional assumption on
measurability or stability under certain mappings?



Inductive reasoning

Historical remarks

e observation Xi, ..., Xy with permutation invariant joint law
e infer on law of Xy,1 given Xq,..., Xy



Inductive reasoning

Historical remarks

e observation Xi, ..., Xy with permutation invariant joint law
e infer on law of Xy,1 given Xq,..., Xy
e W. Johnson (~ 1924), R. Carnap (~ 1950)

(J) P(Xn+1 = j| X1, .-, Xn) = fi(n))



Inductive reasoning

Historical remarks

observation Xi, ..., Xy with permutation invariant joint law
infer on law of Xy 1 given Xi,..., Xy
W. Johnson (~ 1924), R. Carnap (~ 1950)

(J) P(Xni1=J1X1,..., Xn) = fi(n))
Boge (~ 1970)

P(o(Xns1) = i|X1, ..., Xn)

(B) =P(p(Xn+1) = ile(X1), ..., o(Xn))



Inductive reasoning

Historical remarks

observation Xi, ..., Xy with permutation invariant joint law
infer on law of Xy 1 given Xi,..., Xy
W. Johnson (~ 1924), R. Carnap (~ 1950)

(J) P(Xny1 = j1X1, ..., Xn) = fi(n))
Boge (~ 1970)

P(o(Xns1) = i|X1, ..., Xn)

(B) =P(p(Xn+1) = ile(X1), ..., o(Xn))

Postulates are eqivalent to

. a;j + bn;
P(Xn+1 =JjX1,..., Xn) = m
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Sufficiency for singletons

assume 7 is a kernel such that for p+— 7,
) Lyyemuss, = Lpyyem

(S) space contains at least 3 elements
Linear Reinforcement (Zessin, R. 12)
Given (N) and (S),

mu(dx) = p(dx) + c(x)pu(dx)

Sufficiency for singletons (Zessin, R. 12)
(1) is equivalent to
(J) > mu({x}) is o(Ng,q)-measurable for all x
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Intermezzo: Existence and state space transformations

Existence (Zessin 09; Nehring, Zessin 11)

If c(x) €10,1) or if c(x) <0 and —pgi;) € N, then there exists a
unique point process P such that

Colh) = [ [ Ao+ 8.)m,()P(an). 2)

Assume G : X — Y is a state space transformation s.th. GP is a
point process

State space transformation

If Gpy = Guo implies m,, o G = m,, o G for an admissable G, then
GP satisfies (2) with 7, replaced by 7], = 7, o G for y such that
Gu=v.
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Equivalences

Question
What happens if 7 is stable under a huge class of admissable state
space transformations?

Stability and sufficiency (Zessin, R. 12)

Assume that there exists P for kernel 7 and (S). Then the
following statements are equivalent

® 7,(dx) = p(dx) + cu(dx) for some ¢ < 1,

® (N) and x — 75, ({x}) — mo({x}) is constant,

©® 7(B) is o(Ng)-measurable for all closed B,

O T is stable under all continuous state space transformations
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Characterization

Remarks and Examples

@ two versions of the sufficiency postulate yield basically same
structure, but differences in detail
® Examples (Bach, Zessin)
e MB statistics: m,(dx) = c(x)p(dx)
e BE/FD statisitcs: 7, (dx) = ¢(x)[p % p](dx)

© add interactions: Lgyyemis, = f(-,y)l1emy

(%) = V() [p(dx) + €(x)pa(x)]
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