
RANDOM WALK ON Z WITH ONE-POINT
INHOMOGENEITY

A. Pellegrinotti ∗

1 Generalities and main result

The model that I want to consider here is a particular case of the non-homogeneous case
introduced by Minlos and Zhizhina in 1994 [1]. They consider a discrete time random
walk on Zd with transitions probabilities

P(y 7→ x) = P0(x− y) + V (x− y, y).

Where P0(u), u ∈ Zd is a symmetric probability and V (·, ·) is such that

P0(u) + V (u, y) ∈ [0, 1) ∀ y, u ∈ Zd

and ∑
u

V (u, y) = 0 ∀ y ∈ Zd

They also assume that P0(·) and V (·, ·) are local, i.e. exist positive numbers R0, R such
that

P0(u) = 0, if |u| > R0 and V (u, ·) = 0 if |u| > R.

An important assumption is that there are no traps i.e. there is not set Y ⊂ Zd such that
a walk starting at Y cannot leave the set.

For d = 1, if we denote by Xt the position of the random walk at time t, under the
assumptions above is proved in [1] the following asymptotics:

if max{|x|, |y|} < ε
√
t log t (ε > 0,small) then

P(Xt = x|X0 = y) =
1√

2πtσ

[
e−

(x−y)2

2tσ2 + k sign(x)e−
(|x|+|y|)2

2tσ2 +O
(

1

|x|+ 1

)]
+ o(1/

√
t),

where σ2 =
∑

u u
2P0(u) and k is a constant depending on the parameters of the model.

The methods of the proof is purely analityc and as the authors state in the paper it would
be desiderable to find a more probabilistic approach to the problem.
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As a first step in this direction we consider a simplified version of the model, i.e. we
consider a transition probabilities of the form

P(y 7→ x) = P0(x− y) + δ0,yc(x− y),

where P0(·) and c(·) verify the same hypothesis as in the general case. The only difference
is that we assume exponential decay i.e. ∃ B > 0 such that∑

u

(P0(u) + |c(u)|)eB|u| <∞. (1.1)

Considering the functions

p̃0(λ) =
∑

ei(λ,u)P0(u)

c̃(λ) =
∑

ei(λ,u)c(u)

by assumption (1.1) we have that they can be extended to a strip in the complex plane:
λ 7→ λ+ iµ with |µ| < B.

We also assume that |p̃0(λ)| < 1 for λ 6= 0 i.e. the corresponding random walk
is irreducible. We take for simplicity y = 0. Then we have the following local limit
asymptotics.

Theorem If x = o(t
3
4 ), x 6= 0, then the following asymptotics holds as t → ∞, for

some constant κ > 0,

P (Xt = x|X0 = 0) =
1√

2πtσ

[
e−

x2

2tσ2 +
sign(x) b

σ2I
e−

x2

2tσ2 + e−κ|x|
Φ(x)

I

]
+ o(1/

√
t)

where b =
∑

u uc(u), the function Φ(x) is uniformly bounded and independent of t, and

I =
1

2π

∫
T

1− p̃0(µ)− c̃(µ)

1− p̃0(µ)
dµ.

.
The proof of this Theorem is in [3].
In order to sketch the proof of this result we introduce quantities that can be introduced

also in a more general setup.

2 Preliminary constructions

In this section we describe our basic formulas for the proof of Theorem . We consider the
general case of dimension d ≥ 1, as the basic constructions do not depend on d. We only
assume that the decay is fast enough for the Fourier transforms to exist.

Consider an inhomogeneous random walk on Zd with probabilities P (x→ y), let

P (t)(x|y) = P (Xt = x|X0 = y), P (0)(x|y) = δx,y,
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and denote by ft(x|y), for t = 1, 2, . . ., the probability that the random walk goes from y
to x without going through the origin

ft(x|y) =
∑
y1 6=0

P (y → y1)
∑
y2 6=0

P (y1 → y2) . . .
∑
yt−1 6=0

P (yt−2 → yt−1)P (yt−1 → x). (2.1)

There is (as is well know) a relation between P (t)(x|y) and ft(x|y) i.e.

P (t)(x|y) = ft(x|y) +
t−1∑
k=1

P (k)(0|y)ft−k(x|0), t > 1

and
f1(x|y) = P (y → x) = P (1)(x|y).

For y = 0 we set for brevity P (t)(x|0) = P (t)(x), ft(x|0) = ft(x). We introduce the
generating functions

H(z;x) =
∞∑
t=0

P (t)(x)zt, F (z;x) =
∞∑
t=1

ft(x)zt. (2.2)

Now it is easy to show that

H(z;x) = δx,0 +H(z; 0)F (z;x). (2.3)

Inverting the relation (2.2), using (2.3), we have (t > 0)

P (t)(x) =
1

2πi

∫
γ

dz

zt+1
H(z;x) =

1

2πi

∫
γ

dz

zt+1
H(z; 0)F (z;x),

where γ is an anticlockwise loop which contains the origin and does not contain the
singularities of H(z;x).

In order to make the asymptotics analysis we take the Fourier transforms:

H̃(z;λ) =
∑
x∈Zd

H(z;x)ei(λ,x), F̃ (z;λ) =
∑
x∈Zd

F (z;x)ei(λ,x),

and using the previous relations we get

H̃(z;λ) = 1 +H(z; 0)F̃ (z;λ)

and from this we have

F̃ (z;λ) =
H̃(z;λ)− 1

H(z; 0)
, H̃(z;λ) = 1 +

F̃ (z;λ)

1− F (z; 0)
.

It is possible to express these quantities in terms of two integrals:

J0(z) =

∫
T d

dm(µ)

1− zp̃0(µ)
, J(z) =

∫
T d

c̃(µ) dm(µ)

1− zp̃0(µ)
, (2.4)
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where dm(λ) = dλ
(2π)d

denotes the normalized Haar measure on T d.The expressions (2.4)

define analytic functions for z ∈ C \ C, where C = {z = 1
p̃0(µ)

: µ ∈ T d} is the cut on

the real axis. Setting q = min p̃0(µ), then C = [1, 1/q], if q ≥ 0 ([1,+∞) if q = 0), and
C = [1,∞) ∪ (−∞, 1/q] if q < 0.

In what follows the superscript (0) denotes quantities related to the homogeneous

random walk P0, such as f
(0)
t , H(0)(z;x), F (0)(z;x).

Lemma 2.1 For the random walk with transition probability

P(y 7→ x) = P0(x− y) + δ0,yc(x− y)

we have, for z ∈ C \ C,

H̃(z;λ) = H̃(0)(z;λ) + H̃(1)(z;λ), F̃ (z;λ) = F̃ (0)(z;λ) + F̃ (1)(z;λ)

where, setting I(z) = 1− zJ(z),

H̃(0)(z;λ) =
1

1− zp̃0(λ)
, H̃(1)(z;λ) =

z c̃(λ)

1− zp̃0(λ)

J0(z)

I(z)

F̃ (0)(z;λ) =
z p̃0(λ)

(1− zp̃0(λ))J0(z)
F̃ (1)(z;λ) =

z

1− zp̃0(λ)

[
c̃(λ)− zp̃0(λ)

J(z)

J0(z)

]
.

The proof of Lemma 2.1 is a direct computation.

Now using the Cauchy integral formula we get:

P (t)(x) =
1

2πi

∫
γ

dz

zt+1
H(z;x) =

1

2πi

∫
γ

dz

zt+1

∫
T d
e−i(λ,x)H̃(z;λ)dm(λ). (2.5)

We have that the last integral in (2.5) is written in the following way:

1

2πi

∫
γ

dz

zt+1

∫
T d
e−i(λ,x)H̃(0)(z;λ)dm(λ) +

1

2πi

∫
γ

dz

zt+1

∫
T d
e−i(λ,x)H̃(1)(z;λ)dm(λ).

To prove our theorem we need to study the quantity:

Rt(x) ≡ 1

2πi

∫
γ

dz

zt+1

∫
T d
e−i(λ,x)H̃(1)(z;λ)dm(λ),

where γ is an anticlockwise loop which contains the origin and does not contain the
singularities of H̃(1)(z;λ).

Remark
All the mathematical objects introduced until now do not depend on the dimension.

From now on we will restrict to the case d = 1 and to fix the notation we assume q > 0.
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3 Main estimates

The main object of our analysis is the quantity:

Rt(x) ≡ 1

2πi

∫
γ

dz

zt+1

∫
T

e−iλxH̃(1)(z;λ)dm(λ), (3.1)

where T is the 1 dimensional torus. We take the loop γ in (3.1) as made of two parts, a
circle of radius 1 + δ, and a small loop γ1 which closes at 1 + δ and goes around the point
z = 1 clockwise. The main contribution to Rt(x) is coming from the integral on γ1. We
perform the change of variables β = z−1

z
and we get

Rt(x) =
1

2πi

∫
γ∗

dβ(1− β)tD(β)

∫
T

c̃(λ)e−iλx

1− p̃0(λ)− β
dm(λ) +O(e−δt), (3.2)

where the loop γ∗ is the image of γ1, and goes around the origin clockwise, and

D(β) =

∫
T

dm(µ)
1−p̃0(µ)−β

1−
∫
T

c̃(µ)dm(µ)
1−p̃0(µ)−β

. (3.3)

The expressions (3.2), (3.3) define analytic functions outside the cut C̃ = [0, 1− q], where
q = min p̃0(λ).

There is a neighborhood U of the origin such that for β ∈ U \ C̃ we have,∫
T

dm(µ)

1− p̃0(µ)− β
= h0(β)(−β)−

1
2 +H0(β), (3.4)

∫
T

c̃(λ) dm(λ)

1− p̃0(λ)− β
=

∫
T

c1(λ) dm(λ)

1− p̃0(λ)− β
= h1(β)(−β)

1
2 +H1(β). (3.5)

Here h0, H0, h1, H1 are analytic functions in U and the phase of (−β)
1
2 in the cut plane

is determined by the condition that (−β)
1
2 is real and positive on the negative real axis.

In (3.5) we take into account that c̃(λ) is the Fourier transform of a real function c(u), so
that c̃(λ) = c1(λ) + ic2(λ) where c1(λ) is even, and c2 is odd. As c̃(0) = 0, for small λ we
have c1(λ) = O(λ2), which gives the representation (3.5). To get (3.4) and (3.5) we use
the results in [2].

Combining (3.4) and (3.5) we get

D(β) = h(β)(−β)−
1
2 +H(β), β ∈ U \ C̃,

where h,H are analytic in U .

We first compute the integral

R
(1)
t (x) =

1

2πi

∫
γ∗

(1− β)tH(−β)dβ

∫
T

c̃(λ)e−iλx

1− p̃0(λ)− β
dm(λ).

5



Because the function inside the integral is integrable w.r.t. the Lebesgue measure dβdm(λ)
we can change the order of integration and write∫

γ∗

(1− β)t
H(−β)

1− p̃0(λ)− β
dβ = 2πi(p̃0(λ))tH(−1 + p̃0(λ)) χ(|λ| < λ∗),

where λ∗ is related (see [3]) to the solution of the equation 1− p̃0(λ)− β = 0.
Then we have

R
(1)
t (x) =

∫ λ∗

−λ∗
c̃(λ)e−iλx(p̃0(λ))tH(−1 + p̃0(λ))dm(λ).

Using a result that we will report briefly in the appendix we get:∣∣∣R(1)
t (x)

∣∣∣ ≤ C1
|x|+ 1

t
3
2

e−
x2

2σ2t .

The other term is

R
(2)
t (x) =

1

2πi

∫
γ∗

dβ h(−β)(−β)−
1
2 (1− β)t

∫
T

c̃(λ)e−iλx

1− p̃0(λ)− β
dm(λ).

In order to evaluate this term we need to take the contribution given by the cut. This
gives as result that

R
(2)
t (x) =

1

π

∫ δ∗

0

dy
√
y
h(−y)(1− y)tPP

∫
T

c̃(λ)e−iλx

1− p̃0(λ)− y
dm(λ).

For what concerns the PP we have

PP

∫
T

c̃(λ)e−iλx

1− p̃0(λ)− y
dm(λ) = e−κ|x|Ψ(y;x) +

J (2y)√
2y

G(λ](y);x)

where λ](y) = λ(
√

2y) is one of the solutions of the equation 1− p̃0(λ) = β and J is the
Jacobian related to the Morse’s lemma. Moreover

Ψ(y;x) =

∫
T

e−iλxc̃(λ− i sign(x) κ)

1− p̃0(λ− i sign(x) κ)− y
dm(λ),

G(λ;x) = c1(λ) sin(λ|x|) + sign(x)c2(λ) cos(λx). (3.6)

where c̃(λ) = c1(λ) + ic2(λ).
Now the contribution of the first term is

R
(2;1)
t (x) =

e−κ|x|

π

∫ δ∗

0

h(−y)
√
y

(1− y)tΨ(y;x)dy.

Now performing the change of variables y = u2

2t
we get

R
(2;1)
t (x) =

e−κ|x|

π

∫ √2tδ∗

0

h(−u
2

2t
)(1− u2

2t
)tΨ(

u2

2t
;x)

√
2

t
du.
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Considering the behaviour for large t we have

R
(2;1)
t (x) ∼

e−κ|x|

π

√
2

t
h(0)Ψ(0;x)

∫ ∞
0

e−
u2

2 du.

By direct calculation we have

h(0) =
h0(0)

1−H1(0)
=

1√
2σI

and so we get

R
(2;1)
t (x) ∼

e−κ|x|√
2πt

1

σI
Ψ(0;x)

The contribution of the second term is:

R
(2;2)
t (x) =

1√
2π

∫ δ∗

0

J (2y)h(−y)(1− y)t
G(λ](y);x)

y
dy.

Now G(·, ·) is the sum of 2 terms (see (3.6)) . We take into account the first, which
we denote as

S
(1)
t (x) =

1√
2π

∫ δ∗

0

J (2y)h(−y)(1− y)t
c1(λ

](y)) sin(λ](y)|x|)
y

dy.

Performing the change of variables y = u2(λ)
2

, where u2(λ)
2

is the new variable given by the
Morse’s Lemma, and observing that

J (2y)dy = u(λ)dλ,

we get

S
(1)
t (x) =

√
2

π

∫ λ∗

0

p̃0(λ)tλg(λ) sin(λ|x|)h(p̃0(λ)− 1)dλ.

Using a result that we will report briefly in the appendix we get:∣∣∣S(1)
t (x)

∣∣∣ ≤ C2
|x|+ 1

t
3
2

e−
x2

2σ2t .

For the contribution of the second term in (3.6), by the same change of variables y → λ,

setting g1(λ) = c2(λ)
u(λ)

we get

S
(2)
t (x) = sign(x)

√
2

π

∫ λ∗

0

(p̃0(λ))tg1(λ) cos(λx)h(p̃0(λ)− 1)dλ.

As c2(λ) = bλ + O(λ3), where b =
∑

u uc(u), we get g1(0) = b
σ
. Using a result that we

will discuss in the next section, taking into account the expressions of h(0), we see that
the asymptotics is

S
(2)
t (x) =

sign(x)√
2πσ2t

b

σ2I
e−

x2

2σ2t + o(t−
1
2 ).
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Setting Φ(x) = Ψ(0; x), we get the proof of the Theorem.
The case x = 0 is studied in the following

Corollary 1 For x = 0, as t→∞, we have

P (Xt = 0|X0 = 0) ∼ 1√
2πt σI

.

Moreover the characteristic function φ(λ) of the first time of return to the origin behaves
for small λ as

φ(λ) = F (eiλ; 0) = 1−
√

2 σ I (1− eiλ)
1
2 +O(1− eiλ). (3.7)

(Here F (z;x) denotes the generating function defined by (2.2).)

Corollary 1 shows that the quantity I, which in terms of the probabilities can be written
as

I = 1−
∞∑
k=0

(c ∗ P (k)
0 )(0),

controls the returns to the origin of the random walk.
If we consider the total time Tn of the first n returns to the origin, which is a sum

of independent variables with characteristic function given by the function φ in (3.7), we
have the following result.
Corollary 2 The characteristic function of the random variable Tn/n

2 behaves, for
n→∞ as (

1−
√

2σ I (1− ei
λ
n2 )

1
2 +O(1− ei

λ
n2 )
)n
→ e−

√
−2iλ σI(1).

Therefore the asymptotic distribution of Tn/n
2 for our inhomogeneous walk is the same

as that of a homogeneous random walk with dispersion σ2I2.

4 Appendix

The main tool to get the result is the study of the integral of the following kind:

I(β|f) =

∫ π

−π

f(λ) dm(λ)

1− p̃0(λ)− β

where β ∈ C. In particular the integral as function of β is analityc outside the cut
C̃ = [0, 1 − q], q = min p̃0(λ). We are interested in the behaviour of I(β|f) for small β
and near the cut.

We assume (as in our model) that f(λ) and p̃0(λ) can be extended by analiticity to a
complex neighborhood of the torus.

In order to study I(β|f) we must introduce the following region: let τ > 0

R(τ) = {λ = λ1 + iλ2 | λ1 ∈ (−π, π], |λ2| < τ}
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Then we have the following result:

Lemma 1 There is a value τ∗ ∈ (0, B) such that for |β| < σ2τ2
∗

4
the equation for the

complex variable λ = λ1 + iλ2

1− p̃0(λ) = β

has only two solutions λ = ±λ(
√

2β) in the region R(τ∗).

This result means that the singular point of I(β|f)| are only 2, if |β| < σ2τ2
∗

4
. Now we

assume τ∗ fixed and δ is a positive number such that δ < σ2τ2
∗

4
.

Now we define the following integral:

P (β, µ|f) =

∫ π

−π

f(λ+ iµ) dm(λ)

1− p̃0(λ+ iµ)− β
,

where µ ∈ R and |µ| < τ∗ and |β| < δ.
Obiously

P (β, 0|f) = I(β|f)

and when β = y is real and positive we define as usual the principal part as

PP

∫ π

−π

f(λ) dm(λ)

1− p̃0(λ)− y
= lim

ε→0

∫
|1−p̃0(λ)−y|>ε

f(λ) dm(λ)

1− p̃0(λ)− y
. (4.1)

The existence of the limit (4.1) is proved in the following lemma:
Lemma 2 Let f be as above, 0 < κ < τ∗ and 0 < y < δ. The following assertions hold.

i) If f is even then the following type of Sokhotski relations for the complex torus hold

lim
ε→0

I(y ± iε|f) = P (y,±κ|f)± iJ (2y)√
2y

f(λ(
√

2y)).

PP

∫ π

−π

f(λ) dm(λ)

1− p̃0(λ)− y
= P (y,±κ|f).

If f is odd, then

P (y,±κ|f)± iJ (2y)√
2y

f(λ(
√

2y)) = 0.

J(·) is the Jacobian related with the application of Morse Lemma.
In the paper [3] it is proved that in a neighborhood of the origin U the representation

I(β|f) = h(β)(−β)−
1
2 +H(β), β ∈ U \ C̃

holds, where h,H are analytic in U . The use of Sokhotski’s formula identifies the functions
h,H in terms of the even part of f . In fact we have the following
Remark If f(λ) is neither even or odd it can be decomposed as f(λ) = f (e)(λ) + f (o)(λ),
where f (e) is even and f (o) is odd. Then, for β = y ∈ (0, δ) we have

lim
ε→0

I(y ± iε|f) = PP

∫ π

−π

f (e)(λ) dm(λ)

1− p̃0(λ)− y
± iJ (2y)√

2y
f (e)(λ(

√
2y)).
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PP

∫ π

−π

f(λ) dm(λ)

1− p̃0(λ)− y
= P (y,±κ|f)± iJ (2y)√

2y
f (o)(λ(

√
2y)).

Now we consider the case f(λ) = g(λ)e−iλx where x ∈ Z, x 6= 0 and g(·) is analytic in
a complex neighborhood of T . We define

Qg(y, µ;x) =

∫ π

−π

g(λ+ iµ)e−iλx

1− p̃0(λ+ iµ)− y
dm(λ).

For µ 6= 0 and small, Qg is uniformly bounded in x, and the following relations hold.
i) If g is even, then

PP

∫ π

−π

g(λ)e−iλx dm(λ)

1− p̃0(λ)− y
= e−κ|x|Qg(y,− sign(x)κ;x)+

+
J (2y)√

2y
g(λ(

√
2y)) sin(λ(

√
2y)|x|).

ii) If g is odd, then

PP

∫ π

−π

g(λ)e−iλx dm(λ)

1− p̃0(λ)− y
= e−κ|x|Qg(y,− sign(x)κ;x)−

− isign(x)
J (2y)√

2y
g(λ(

√
2y)) cos(λ(

√
2y)|x|).

Moreover Qg(y,− sign(x)κ;x) is even in x for even g and is odd for odd g.
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