Construction of point processes for classical and quantum gases

Benjamin Nehring

Institute of Mathematics University Potsdam

7 September 2012

Table of contents

General setting

Infinitely divisible point processes

Point processes with a signed Lévy pseudo measure

Examples

• X Polish space.

- X Polish space.
- $\mathcal{M}^{\cdot\cdot}(X) = \{\mu \mid \mu(B) \in \mathbb{N}_0, \overline{B} \text{ compact}\}\$ set of locally finite point measures.

$$\mu = \sum_{i} \mathsf{a}_{j} \, \delta_{\mathsf{x}_{j}}, \, \mathsf{a}_{j} \in \mathbb{N}, \, \mathsf{x}_{j} \, \, \mathsf{distinct} \, \, \mathsf{and} \, \, \mathsf{locally} \, \, \mathsf{finitely} \, \, \mathsf{many}.$$

- X Polish space.
- $\mathcal{M}^{\cdot\cdot}(X) = \{\mu \mid \mu(B) \in \mathbb{N}_0, \overline{B} \text{ compact}\}\$ set of locally finite point measures.

$$\mu = \sum_{j} a_j \, \delta_{x_j}, \, a_j \in \mathbb{N}, \, x_j \text{ distinct and locally finitely many.}$$

• $\mathcal{M}_f^{\cdot \cdot}(X) = \{ \mu \in \mathcal{M}^{\cdot \cdot}(X) \mid \mu(X) < \infty \}$ set of finite point measures.

- X Polish space.
- $\mathcal{M}^{\cdot\cdot}(X) = \{\mu \mid \mu(B) \in \mathbb{N}_0, \overline{B} \text{ compact}\}\$ set of locally finite point measures.

$$\mu = \sum_{j} a_j \, \delta_{x_j}, \, a_j \in \mathbb{N}, \, x_j \text{ distinct and locally finitely many.}$$

- $\mathcal{M}_f(X) = \{ \mu \in \mathcal{M}^{\cdot \cdot}(X) \mid \mu(X) < \infty \}$ set of finite point measures.
- $P \in \mathcal{PM}^{\cdot \cdot}(X)$ point processes, probability measures on $\mathcal{M}^{\cdot \cdot}(X)$.

- X Polish space.
- $\mathcal{M}^{\cdot\cdot}(X) = \{\mu \mid \mu(B) \in \mathbb{N}_0, \overline{B} \text{ compact}\}\$ set of locally finite point measures.

$$\mu = \sum_j a_j \, \delta_{x_j}, \ a_j \in \mathbb{N}, \ x_j \ \text{distinct and locally finitely many}.$$

- $\mathcal{M}_{f}^{\cdot \cdot}(X) = \{ \mu \in \mathcal{M}^{\cdot \cdot}(X) \mid \mu(X) < \infty \}$ set of finite point measures.
- $P \in \mathcal{PM}^{\cdot \cdot}(X)$ point processes, probability measures on $\mathcal{M}^{\cdot \cdot}(X)$.
- $P \in \mathcal{PM}_{\mathfrak{c}}^{\cdot\cdot}(X)$ finite point processes.

Definition

A point process P is infinitely divisible if for every $n \in \mathbb{N}$ there exists a point process P_n such that

$$P = \underbrace{P_n * \dots * P_n}_{n-times}$$

Definition

A point process P is infinitely divisible if for every $n \in \mathbb{N}$ there exists a point process P_n such that

$$P = \underbrace{P_n * \dots * P_n}_{n-times}$$

• Classical result: For every infinitely divisible point process P there exists a measure L on $\mathcal{M}^{\cdot \cdot}(X)$ (Lévy measure or cluster measure) such that $\int (1-e^{-\mu(f)}) \dot{L}(d\mu) < \infty$ for $f \in F_{bc,+}(X)$ and $\mathcal{M}^{\cdot\cdot}(X)$

$$\mathcal{L}_P(f) = \int\limits_{\mathcal{M}^{\cdot\cdot}(X)} e^{-\mu(f)} \, P(\operatorname{d}\mu) = \exp(-\int\limits_{\mathcal{M}^{\cdot\cdot}(X)} \left(1 - e^{-\mu(f)}\right) \mathit{L}(\operatorname{d}\mu))$$

Definition

A point process P is infinitely divisible if for every $n \in \mathbb{N}$ there exists a point process P_n such that

$$P = \underbrace{P_n * \ldots * P_n}_{n-times}$$

• Classical result: For every infinitely divisible point process P there exists a measure L on $\mathcal{M}^{\cdot \cdot}(X)$ (Lévy measure or cluster measure) such that $\int (1-e^{-\mu(f)}) \dot{L}(d\mu) < \infty$ for $f \in F_{bc,+}(X)$ and $\mathcal{M}^{\cdot\cdot}(X)$

$$\mathcal{L}_P(f) = \int\limits_{\mathcal{M}^{\cdot\cdot}(X)} e^{-\mu(f)} \, P(\operatorname{d}\mu) = \exp(-\int\limits_{\mathcal{M}^{\cdot\cdot}(X)} (1 - e^{-\mu(f)}) \, L(\operatorname{d}\mu))$$

• We call $\Im_L = P$ the random KMM-process for L.

• L measure on $\mathcal{M}^{\cdot \cdot}(X)$ (cluster measure) such that the first moment of L is locally finite. That is

$$\int\limits_{\mathcal{M}^{\cdot\cdot}(X)}\mu(f)\,L(\operatorname{d}\mu)<\infty \text{ for all } f\in F_{bc,+}(X).$$

• L measure on $\mathcal{M}^{\cdot \cdot}(X)$ (cluster measure) such that the first moment of L is locally finite. That is

$$\int\limits_{\mathcal{M}^+(X)} \mu(f) \, L(\operatorname{d} \mu) < \infty \, \text{ for all } \, f \in F_{bc,+}(X).$$

• Classical result: Let P_L Poisson point process in $\mathcal{M}^{\cdot \cdot}(X)$ then

$$\Im_L = P_L \circ \xi^{-1}$$

where

$$\xi: \left\{ \begin{array}{l} \mathcal{M}^{\cdot\cdot}(\mathcal{M}^{\cdot\cdot}(X)) \to \mathcal{M}^{\cdot\cdot}(X) \\ \mu = \delta_{\nu_1} + \delta_{\nu_2} + \ldots \mapsto \sum_j \nu_j \end{array} \right.$$

Characterization of infinitely divisible P.P. via an integral equation

Theorem (Mecke, 1969)

Let P be a point process then $P = \Im_L \Leftrightarrow$

$$C_P(h) = \iint h(x,\mu) \, \mu(\mathrm{d} \, x) P(\mathrm{d} \, \mu) = \iint \int \int h(x,\nu+\mu) \, C_L(\mathrm{d} \, x \, \mathrm{d} \, \nu) P(\mathrm{d} \, \mu)$$

for all $h \ge 0$ measurable on $X \times \mathcal{M}^{\cdot \cdot}(X)$.

For short

$$C_P = C_L \star P$$
.

• Let now L^+ and L^- be two Lévy measures on $\mathcal{M}_f^{\cdot \cdot}(X)$, that is

$$\int\limits_{\mathcal{M}_f^{\cdots}(X)} (1-e^{-\mu(f)}) L^{\pm}(\operatorname{d}\mu) < \infty \text{ for all } f \in F_{bc,+}(X).$$

• Let now L^+ and L^- be two Lévy measures on $\mathcal{M}_f^{\cdot \cdot}(X)$, that is

$$\int\limits_{\mathcal{M}_f^{\sim}(X)} (1-e^{-\mu(f)}) L^{\pm}(\operatorname{d}\mu) < \infty \text{ for all } f \in F_{bc,+}(X).$$

• Main question: When does exist a point process P in X such that

$$\mathcal{L}_{P}(f) = \exp\left(-\int\limits_{\mathcal{M}_{f}^{\cdot}(X)} (1 - e^{-\mu(f)}) \left(L^{+} - L^{-}\right) (\mathrm{d}\,\mu)\right), \quad f \in F_{bc,+}(X).$$

• Let now L^+ and L^- be two Lévy measures on $\mathcal{M}_f^{\cdot \cdot}(X)$, that is

$$\int\limits_{\mathcal{M}_f^{\cdot\cdot}(X)} (1-\mathrm{e}^{-\mu(f)}) L^{\pm}(\mathrm{d}\,\mu) < \infty \text{ for all } f \in F_{bc,+}(X).$$

• Main question: When does exist a point process P in X such that

$$\mathcal{L}_{P}(f) = \exp\left(-\int\limits_{\mathcal{M}_{f}^{-}(X)} (1 - e^{-\mu(f)}) \left(L^{+} - L^{-}\right) (\mathrm{d}\,\mu)\right), \quad f \in F_{bc,+}(X).$$

Equivalently:

$$\Im_{I^+}=\Im_{I^-}*P.$$

• Let now L^+ and L^- be two Lévy measures on $\mathcal{M}_f^{\cdot \cdot}(X)$, that is

$$\int\limits_{\mathcal{M}_f^{\cdot,\cdot}(X)} (1-\mathrm{e}^{-\mu(f)}) L^{\pm}(\mathrm{d}\,\mu) < \infty \text{ for all } f \in F_{bc,+}(X).$$

• Main question: When does exist a point process P in X such that

$$\mathcal{L}_{P}(f) = \exp\left(-\int_{\mathcal{M}_{f}^{-}(X)} (1-e^{-\mu(f)}) (L^{+}-L^{-}) (\mathrm{d}\,\mu)\right), \quad f \in F_{bc,+}(X).$$

• Equivalently:

$$\Im_{I^+}=\Im_{I^-}*P.$$

• $L = L^+ - L^-$ is called **signed Lévy pseudo measure**.

• Let L^+ and L^- be of the form

$$\int\limits_{\mathcal{M}_{r}^{\cdots}(X)} \varphi(\mu) \, L^{\pm}(\mathrm{d}\,\mu) = \sum_{n=1}^{\infty} \frac{1}{n} \int\limits_{X^{n}} \varphi(\delta_{x_{1}} + \ldots + \delta_{x_{n}}) \, \Theta_{n}^{\pm}(\mathrm{d}\,x_{1} \ldots \mathrm{d}\,x_{n}),$$

where Θ_n^+ and Θ_n^- are Radon (locally finite) measures on X^n .

• Let L^+ and L^- be of the form

$$\int_{\mathcal{M}_{r}^{\cdot}(X)} \varphi(\mu) L^{\pm}(d\mu) = \sum_{n=1}^{\infty} \frac{1}{n} \int_{X^{n}} \varphi(\delta_{x_{1}} + \ldots + \delta_{x_{n}}) \Theta_{n}^{\pm}(dx_{1} \ldots dx_{n}),$$

where Θ_n^+ and Θ_n^- are Radon (locally finite) measures on X^n .

• Introduce the signed Radon measures $\Theta_n = \Theta_n^+ - \Theta_n^-$.

Let L⁺ and L⁻ be of the form

$$\int_{\mathcal{M}_{r}^{\cdots}(X)} \varphi(\mu) L^{\pm}(d\mu) = \sum_{n=1}^{\infty} \frac{1}{n} \int_{X^{n}} \varphi(\delta_{x_{1}} + \ldots + \delta_{x_{n}}) \Theta_{n}^{\pm}(dx_{1} \ldots dx_{n}),$$

where Θ_n^+ and Θ_n^- are Radon (locally finite) measures on X^n .

• Introduce the signed Radon measures $\Theta_n = \Theta_n^+ - \Theta_n^-$.

Theorem

Let L^+ and L^- be measures on $\mathcal{M}_f^{\cdot \cdot}(X)$ of the above form such that

$$\int\limits_{\mathcal{M}_{f}^{+}(X)}(1-e^{-\mu(f)})L^{\pm}(\operatorname{d}\mu)<\infty \ \textit{for all} \ f\in F_{bc,+}(X),$$

$$\varrho_k(\mathop{\otimes}\limits_{j=1}^k f_j) = \sum_{\sigma \in S_k} \prod_{\omega \in \sigma} \Theta_{|\omega|}(\mathop{\otimes}\limits_{j \in \omega} f_j) \geq 0 \text{ for all } f_1, \dots, f_k \in F_{bc,+}(X).$$

Then there exists a point process \Im_L such that $\Im_{L^+} = \Im_{L^-} * \Im_L$.

Idea of the proof

• Let $L = L^+ - L^-$. Take $\Lambda \subset X$ bounded then

$$L_{\Lambda}(\varphi) = L(1_{\mathcal{M}_{f}^{\cdot\cdot}(\Lambda)}\varphi), \quad \varphi \geq 0$$
 measurable,

is the finite signed Lévy measure of

$$Q_{\Lambda}(\varphi) = \frac{1}{\Xi(\Lambda)} \sum_{n=0}^{\infty} \frac{1}{n!} \int_{\Lambda^n} \varphi(\delta_{x_1} + \ldots + \delta_{x_n}) \, \varrho_n(dx_1 \ldots dx_n).$$

• Let $L=L^+-L^-$. Take $\Lambda\subset X$ bounded then

$$L_{\Lambda}(\varphi) = L(1_{\mathcal{M}_{r}^{\cdot \cdot}(\Lambda)} \varphi), \quad \varphi \geq 0$$
 measurable,

is the finite signed Lévy measure of

$$Q_{\Lambda}(\varphi) = \frac{1}{\Xi(\Lambda)} \sum_{n=0}^{\infty} \frac{1}{n!} \int_{\Lambda^n} \varphi(\delta_{x_1} + \ldots + \delta_{x_n}) \, \varrho_n(\mathsf{d} \, x_1 \ldots \mathsf{d} \, x_n).$$

That means

$$\mathcal{L}_{Q_{\Lambda}}(f) = \exp\bigg(-\int\limits_{\mathcal{M}_{\sigma}(\Lambda)} (1-e^{-\mu(f)}) L(\operatorname{d}\mu)\bigg).$$

Idea of the proof

• Let $L = L^+ - L^-$. Take $\Lambda \subset X$ bounded then

$$L_{\Lambda}(\varphi) = L(1_{\mathcal{M}_{f}^{\cdot\cdot}(\Lambda)}\varphi), \quad \varphi \geq 0$$
 measurable,

is the finite signed Lévy measure of

$$Q_{\Lambda}(\varphi) = \frac{1}{\Xi(\Lambda)} \sum_{n=0}^{\infty} \frac{1}{n!} \int_{\Lambda^n} \varphi(\delta_{x_1} + \ldots + \delta_{x_n}) \, \varrho_n(dx_1 \ldots dx_n).$$

That means

$$\mathcal{L}_{Q_{\Lambda}}(f) = \exp\bigg(-\int\limits_{\mathcal{M}_{G}^{*}(\Lambda)} (1-e^{-\mu(f)}) L(\operatorname{d}\mu)\bigg).$$

· Conclude with Lévy's continuity theorem.

Characterization of point processes with a signed Lévy pseudo measure via an integral equation

Theorem

Let $|L| = L^+ + L^-$ be of first order and P a point process, then $P = \Im_L$ if and only if

$$(C_{L^{-}} \star P)(h) + C_{P}(h) = (C_{L^{+}} \star P)(h)$$

for all $h \ge 0$ measurable on $X \times \mathcal{M}^{\cdot \cdot}(X)$. Recall

$$(C_{L^{\pm}} \star P)(h) = \int \int \int h(x, \nu + \mu) C_{L^{\pm}}(\mathrm{d} x \, \mathrm{d} \nu) P(\mathrm{d} \mu)$$

.

Characterization of point processes with a signed Lévy pseudo measure via an integral equation

Theorem

Let $|L| = L^+ + L^-$ be of first order and P a point process, then $P = \Im_L$ if and only if

$$(C_{L^{-}} \star P)(h) + C_{P}(h) = (C_{L^{+}} \star P)(h)$$

for all $h \ge 0$ measurable on $X \times \mathcal{M}^{\cdot \cdot}(X)$. Recall

$$(C_{L^{\pm}} \star P)(h) = \int \int \int h(x, \nu + \mu) C_{L^{\pm}}(\mathrm{d} x \, \mathrm{d} \nu) P(\mathrm{d} \mu)$$

.

Corollary

For a particular class of testfunctions h we have

$$C_{Q_{\Lambda}}(h) \to C_{\Im_I}(h)$$
, as $\Lambda \uparrow X$.

Let $X=\mathbb{R}^d$ and $\phi:X\times X\to\mathbb{R}\cup\{\infty\}$ be a stable and regular pair potential, that is

$$\begin{split} E_\phi(\delta_{x_1}+\ldots+\delta_{x_n}) &:= \sum_{1 \leq i < j \leq n} \phi(x_i,x_j) \geq -B \, n, \text{ for some } B \in [0,\infty), \\ C_\phi &:= \sup_{x \in X} \int |1-e^{-\phi(x,y)}| \, \operatorname{d} y < \infty. \end{split}$$

Let us denote by U_{ϕ} the Ursell function corresponding to ϕ , that is

$$U_{\phi}(x_1,\ldots,x_n)=\sum_{G\in\mathcal{C}_n}\prod_{\{i,j\}\in G}(e^{-\phi(x_i,x_j)}-1),$$

where C_n denotes the set of all undirected connected graphs with n vertices.

$$L_{\phi}(\varphi) = \sum_{n=1}^{\infty} \frac{z^n}{n!} \int_{X_n} \varphi(\delta_{x_1} + \ldots + \delta_{x_n}) U_{\phi}(x_1, \ldots, x_n) dx_1 \ldots dx_n.$$

Locally finiteness of first moment of $|L_{\phi}| = L_{\phi}^+ + L_{\phi}^-$. Let $f \in F_{bc,+}(X)$

$$\int \mu(f) |L_{\phi}| (\mathrm{d} \mu)$$

$$= \int \mathrm{d} x f(x) \sum_{n=1}^{\infty} \frac{z^n}{(n-1)!} \int_{X^{n-1}} \mathrm{d} x_2 \dots \mathrm{d} x_n |U_{\phi}(x, x_2, \dots, x_n)|$$

Ruelle's algebraic approach yields

$$Q_{\Lambda}(\varphi) = \frac{1}{\Xi(\Lambda)} \sum_{n=0}^{\infty} \frac{z^n}{n!} \int_{\Lambda^n} \varphi(\delta_{x_1} + \ldots + \delta_{x_n}) e^{-E_{\phi}(\delta_{x_1} + \ldots + \delta_{x_n})} dx_1 \ldots dx_n.$$

Theorem

For sufficiently small $z \in (0, \infty)$ and a stable and regular pair potential ϕ , $\Im_{L_{\phi}}$ exists and is a Gibbs process.

Theorem

For sufficiently small $z \in (0, \infty)$ and a stable and regular pair potential ϕ , $\Im_{L_{\phi}}$ exists and is a Gibbs process.

P is a Gibbs point process to the pair potential ϕ and activity $z \in (0, \infty)$ if it is a solution to the Campbell equilibrium equation

$$\iint h(x,\mu)\,\mu(\mathrm{d}\,x)P(\mathrm{d}\,\mu) = \iint h(x,\mu+\delta_x)\,\mathrm{e}^{-E_\phi(x,\mu)}\,z\lambda(\mathrm{d}\,x)\,P(\mathrm{d}\,\mu),$$

where $h \ge 0$ on $X \times \mathcal{M}^{\cdot \cdot}(X)$ and the *conditional energy* is given by

$$E_{\phi}(x,\mu) = \begin{cases} \int \phi(x,y) \, \mu(\operatorname{d} y), & \int |\phi(x,y)| \, \mu(\operatorname{d} y) < \infty \\ \infty, & \text{else.} \end{cases}$$

Determinantal processes

Let $k: X \times X \to \mathbb{R}$ be a bounded and non negative definite kernel, that is for any $z_1, \ldots, z_n \in \mathbb{R}$ and $x_1, \ldots, x_n \in X$

$$\sum_{i,j=1}^n z_i k(x_i,x_j) z_j \geq 0.$$

Additionally assume

$$\gamma_k = \sup_{y \in X} \int |k(x, y)| \, \mathrm{d} \, x < 1.$$

$$L_k(\varphi) = \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n} \int_{X_n} \varphi(\delta_{x_1} + \ldots + \delta_{x_n}) k(x_1, x_2) \ldots k(x_n, x_1) dx_1 \ldots dx_n.$$

Determinantal processes

Locally finiteness of first moment of $|L_k|$. Let $f \in F_{bc,+}(X)$

$$\int \mu(f) |L_k| (d \mu)$$

$$= \sum_{n=1}^{\infty} \int_{X_n} f(x_1) |k(x_1, x_2)| |k(x_2, x_3)| \dots |k(x_n, x_1)| d x_1 \dots d x_n$$

$$\leq ||k||_{\infty} \lambda(f) \sum_{n=1}^{\infty} \gamma_k^{n-1}$$

Furthermore we have

$$\begin{split} &Q_{\Lambda}(\varphi) \\ &= \frac{1}{\Xi(\Lambda)} \sum_{n=0}^{\infty} \frac{1}{n!} \int_{\Lambda^n} \varphi(\delta_{x_1} + \ldots + \delta_{x_n}) \, \det(\{k(x_i, x_j)\}_{i,j}) \, \mathrm{d} \, x_1 \ldots \mathrm{d} \, x_n. \end{split}$$

Determinantal processes

Theorem

Let $k: X \times X \to \mathbb{R}$ be a bounded and non negative definite kernel such that

$$\gamma_k = \sup_{y \in X} \int |k(x, y)| \, dx < 1.$$

Then the point process \Im_{L_k} corresponding to the signed Lévy pseudo measure

$$L_k(\varphi) = \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n} \int_{X^n} \varphi(\delta_{x_1} + \ldots + \delta_{x_n}) k(x_1, x_2) \ldots k(x_n, x_1) dx_1 \ldots dx_n.$$

is a determinantal process with correlation kernel

$$K(x,y) = \sum_{m=1}^{\infty} (-1)^{m-1} k^{(m)}(x,y),$$

where $k^{(1)}(x,y) = k(x,y)$ and $k^{(m)}(x,y) = \int k^{(m-1)}(x,z)k(z,y) dz$, m > 2.

Gibbs - determinantal processes

Is there a Gibbsian modification of determinantal processes? That is, does the thermodynamic limit of the local processes

$$\begin{split} Q_{\Lambda}(\varphi) &= \frac{1}{\Xi(\Lambda)} \sum_{n=0}^{\infty} \frac{z^n}{n!} \\ &\int_{\Lambda^n} \varphi(\delta_{x_1} + \ldots + \delta_{x_n}) \, \mathrm{e}^{-E_{\phi}(\delta_{x_1} + \ldots + \delta_{x_n})} \, \mathrm{det}(\{k(x_i, x_j)\}_{i,j}) \, \mathrm{d} \, x_1 \ldots \mathrm{d} \, x_n \\ &\text{as } \Lambda \uparrow X \text{ exist?} \end{split}$$

Gibbs - determinantal processes

Is there a Gibbsian modification of determinantal processes? That is, does the thermodynamic limit of the local processes

$$Q_{\Lambda}(\varphi) = \frac{1}{\Xi(\Lambda)} \sum_{n=0}^{\infty} \frac{z^n}{n!}$$

$$\int_{\Lambda^n} \varphi(\delta_{x_1} + \ldots + \delta_{x_n}) e^{-E_{\phi}(\delta_{x_1} + \ldots + \delta_{x_n})} \det(\{k(x_i, x_j)\}_{i,j}) dx_1 \ldots dx_n$$
as $\Lambda \uparrow X$ exist?

This will be the subject of the next talk!

References

- Kuna, T.: Properties of Marked Gibbs Measures in High Temperature Regime. Methods Funct. Anal. Topology 7, 33-53 (2001).
- Malyshev, V., Minlos, R.: Gibbs Random Fields: Cluster Expansions. Mathematics and Its Applications. Kluwer Academic Publishers (1991).
- Matthes, K., Kerstan, J., Mecke, J.: *Infinitely divisible point processes*. Wiley (1978).
- Mecke, J.: Random measures. Walter Warmuth Verlag (2011).
- Nehring, B.: Construction of Point Processes for Classical and Quantum Gases. Preprint U Potsdam (2012).
- Nguyen, X., Zessin, H.: Integral and Differential Characterizations of the Gibbs Process. Math. Nachr. 88, 105-115 (1979).

References

- Poghosyan, S., Ueltschi, D.: Abstract cluster expansion with applications to statistical mechanical systems. J. Math. Phys. 50, 053509 (2009).
- Shirai, T., Takahashi, Y.: Random point fields associated with certain Fredholm determinants I: fermion, Poisson and boson point processes. J. Funct. Ana. 205, 414-463 (2003).
- Soshnikov, A.: *Determinantal Random Point Fields*. Russian Mathematical Surveys 55, 923-975 (2000).

 \mathfrak{Fin}