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Notations

I ‘Lattice’ Γ, usually infinite set such as Zν ;

I finite-dimensional Hilbert space of states Hx for each
x ∈ Γ;

I For each finite Λ ⊂ Γ,

HΛ =
⊗
x∈Λ

Hx .

with a tensor product basis |{αx}〉 =
⊗

x∈Λ |αx〉
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I The algebra of observables of the system in the finite
volume Λ:

AΛ =
⊗
x∈Λ

B(Hx) = B(HΛ).

If X ⊂ Λ, we have AX ⊂ AΛ, by identifying A ∈ AX with
A⊗ 1lΛ\X ∈ AΛ. Then

A =
⋃

Λ

AΛ

‖·‖
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Interactions, Dynamics, Ground States
The Hamiltonian HΛ = H∗Λ ∈ AΛ is defined in terms of an
interaction Φ: for any finite set X , Φ(X ) = Φ(X )∗ ∈ AX , and

HΛ =
∑
X⊂Λ

Φ(X )

For finite-range interactions, Φ(X ) = 0 if diamX ≥ R .
Heisenberg Dynamics: A(t) = τΛ

t (A) is defined by

τΛ
t (A) = e itHΛAe−itHΛ

For finite systems, ground states are simply eigenvectors of HΛ

belonging to its smallest eigenvalue (sometimes several ‘small
eigenvalues’).
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Thermodynamic Limits
Behavior at the boundaries and dependence on topology of the
lattice when classifying the qualitative behavior of the ground
states of a given model is important (cfr. Graf’s talk).

Therefore, consider them as a family of models defined by
interactions Φg on lattices Γg , which are identical in the bulk,
i.e., away from boundaries and on a scale too short to detect
the topology, which is labeled by g ∈ G (e.g., genus g). In
order to classify not only the bulk phases, but also boundary
and topological phases, one needs to consider a variety of
thermodynamic limits leading to infinite systems The different
topologies of interest are represented by {Γg}g∈G .

Take thermodynamic limit along Λn ↑ Γg .
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So, in one dimension, we need to consider at least two types
of infinite systems:

· · ·· · · · · ·

The bold site denotes a boundary. A classification of
one-dimensional models with gapped ground states The
simplest examples in two dimensions are:
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What is a quantum ground state phase?
By phase, here we mean a set of models with qualitatively
similar behavior. E.g., a g.s. ψ0 of one model could evolve to a
g.s. ψ1 of another model in the same phase by some physically
acceptable dynamics and in finite time. For finite systems such
a dynamics is provided by a quasi-local unitary UΛ.

When we take the thermodynamic limit

lim
Λ↑Γ

U∗ΛAUΛ = α(A), A ∈ AΛ0 ,

this dynamics converges to an automorphism of the algebra of
observables. The quasi-locality property is expressed as
follows: there exists a rapidly decreasing function F (d), and
balls, Bd , of radius d , and Ad ∈ ABd

such that

‖α(A)− Ad‖ ≤ F (d)
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Suppose Φg
0 and Φg

1 are two interactions for two models on
lattices Γg , g ∈ G .

Each has its set Sg
i , i = 0, 1, of ground states in the

thermodynamic limit. I.e., for ω ∈ Sg
0 , there exists

ψΛn g.s. of HΛn =
∑
X⊂Λn

Φg
0 (X ),

for a sequence of Λn ∈ Γg such that

ω(A) = lim
n→∞
〈ψΛn ,AψΛn〉.
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If the two models are in the same phase, for all g ∈ G , we
have a suitably local automorphism αg such that

Sg
1 = Sg

0 ◦ αg

This means that for any state ω1 ∈ Sg
1 , there exists a state

ω0 ∈ Sg
0 , such that the expectation value of any observable A

in ω1 can be obtained by computing the expectation of αg (A)
in ω0:

ω1(A) = ω0(αg (A)).

The quasi-local character of αg guarantees that the support of
αg (A) need not be much larger than the support of A in order
to have this identity with small error.
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In examples αg is constructed as the dynamics for a fictitious
short-range interaction (Bachmann, Michalakis, N, Sims, CMP
2012).
E.g., if Φ0 and Φ1 are interactions for there exists a smooth
interpolation Φs , s ∈ [0, 1], and such that there is a spectral
gap ≥ γ > 0 above the ground state for all s ∈ [0, 1],
then there are automorphisms αs such that S(s) = S(0) ◦ αs .
αs can be constructed as the thermodynamic limit of the
s-dependent “time” evolution for an interaction Ω(X , s).
Concretely, the action of αs on observables is given by

αs(A) = lim
n→∞

V ∗n (s)AVn(s)

where Vn(s) solves a Schrödinger equation:

d

ds
Vn(s) = iDn(s)Vn(s), Vn(0) = 1l,

with Dn(s) =
∑

X⊂Λn
Ω(X , s).
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Product Vacua with Boundary States (PVBS)
(joint work with Sven Bachmann, PRB 2012)
We consider a quantum spin chain with n + 1 states at each
site that we interpret as n distinguishable particles labeled
i = 1, . . . , n, and an empty state denoted by 0.
The Hamiltonian for a chain of L spins is given by

H[1,L] =
L−1∑
x=1

hx ,x+1, (1)

where each hx ,x+1 is a sum of ‘hopping’ terms (each
normalized to be an orthogonal projection) and projections
that penalize particles of the same type to be nearest
neighbors.
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h =
n∑

i=1

|φ̂i〉〈φ̂i |+
n∑

1≤i≤j≤n

|φ̂ij〉〈φ̂ij |,

The φij ∈ Cn+1 ⊗ Cn+1 are given by

φi = |i , 0〉−e−θi0λ−1
i |0, i〉 , φij = |i , j〉−e−θijλ−1

i λj |j , i〉 , φii = |i , i〉

for i = 1, . . . , n and i 6= j = 1, . . . , n.
The parameters satisfy: θij ∈ R, θij = −θji , and λi > 0, for
0 ≤ i , j ≤ n, and λ0 = 1.
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There exist n + 1 2n × 2n matrices v0, v1, . . . , vn, satisfying the
following commutation relations:

vivj = e iθijλiλ
−1
j vjvi , i 6= j (2)

v 2
i = 0, i 6= 0 (3)

Then, for B an arbitrary 2n × 2n matrix,

ψ(B) =
n∑

i1,...,iL=0

Tr(BviL · · · vi1)|i1, . . . , iL〉 (4)

is a ground state of the model (MPS vector). In fact, they are
all the ground states. E.g., one can pick B such that

ψ(B) =
L∑

x=1

(
e iθi0λi

)x |0, . . . , 0, i , 0, . . . , 0〉
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If we add the assumption that λi 6= 1, for i = 1, . . . , n, we will
have nL particles having λi < 1 that bind to the left edge, and
nR = n − nL particles with λi > 1, which, when present, bind
to the right edge. The bulk ground state is the vacuum state

Ω = |0, . . . , 0〉 .
All other ground states differ from Ω only near the edges.
We can prove that the energy of the first excited state is
bounded below by a positive constant, independently of the
length of the chain. As at most one particle of each type can
bind to the edge, any second particle of that type must be in a
scattering state. The dispersion relation is

εi(k) = 1− 2λi
1 + λ2

i

cos(k + θi0) .

We conjecture that the exact gap of the infinite chain is

γ = min

{
(1− λi)2

1 + λ2
i

∣∣∣∣ i = 1, . . . , n

}
.
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Automorphic equivalence of PVBS models

Two PVBS models belong to the same equivalence class if and
only if they have the same nL and nR .

(i) Since equivalent phases are related by an automorphism, a
unique bulk ground state can only be mapped to another
unique bulk state. Similarly, the ground state space
dimensions of the half-infinite chains, 2nL and 2nR , are also
preserved by an automorphism. Hence, if two PVBS models
belong to the same phase, they must have equal nL and nR .

(ii) Conversely, if two PVBS models have the same values of
nL and nR but each with their own sets of parameters
{λi(s) | 1 ≤ i ≤ nL + nR} and {θij(s) | 1 ≤ i , j ≤ nL + nR},
for s = 0, 1, first, perform a change of basis in spin space such
that both sets of PVBS states are expressed in the same spin
basis and such that λi(s) < 1 for 1 ≤ i ≤ nL and λi(s) > 1 for
nL + 1 ≤ i ≤ nL + nR , for s = 0 and s = 1.
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Next, deform the parameters by simple linear interpolation:

λi(s) = (1− s)λi(0) + sλi(1) (5)

θij(s) = (1− s)θij(0) + sθij(1) (6)

This yields a smooth family of vectors φij(s) and thereby a
smooth family of nearest neighbor interactions h(s). The gap
remains open because λi(s) 6= 1 for all i = 1, . . . , n and
s ∈ [0, 1]. By our general result this implies the quasi-local
automorphic equivalence of the two models.
If one uses the same type of interpolation to connect models
with different values of nL and nR , the gap necessarily closes
along the path and there is a quantum phase transition.
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The AKLT model
(Affleck-Kennedy-Lieb-Tasaki, 1987)
Antiferromagnetic spin-1 chain: [1, L] ⊂ Z, Hx = C3,

H[1,L] =
L∑

x=1

(
1

3
1l +

1

2
Sx · Sx+1 +

1

6
(Sx · Sx+1)2

)
=

L∑
x=1

P
(2)
x ,x+1

The ground state space of H[1,L] is 4-dimensional for all L ≥ 2.
In the limit of the infinite chain, the ground state is unique,
has a finite correlation length, and there is a non-vanishing
gap in the spectrum above the ground state (Haldane phase).
Exact ground state is “frustration free” (Valence Bond Solid
state (VBS), Matrix Product State (MPS), Finitely Correlated
State (FCS)).
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J2

J1ferro Haldane

dimer

AKLT

Sutherland SU(3)

Potts SU(3)

Bethe Ansatz

H =
∑

x J1Sx · Sx+1 + J2(Sx · Sx+1)2
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Theorem (Bachmann-N)
The AKLT model belongs to the same equivalence class as the
PVBS models with nL = nR = 1.

The 4 ground states of the a finite chain are usually described
in terms of a spin 1/2 particle attached to the two ends of the
chain. We constructed a smooth gapped path of nearest
neighbor interactions connecting the AKLT model with a
PBVS model with nL = nR = 1, i.e., with one particle for each
boundary.
and proved that the spectral gap does not close along the
path.
Hence, the AKLT model is in the same gapped quantum phase
as the PVBS model with nL = nR = 1.
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In particular, the sets of ground states of these models are
automorphically equivalent for the finite, half-infinite and
infinite chains, where they are isomorphic to a pair of qubits, a
single qubit, and a unique pure state, respectively.

In the bulk the unique ground state is equivalent to a
translation invariant product state.

Contrast with Kennedy-Tasaki unitary, which reveals the
hidden symmetry in the AKLT ground state, but is non-local
and maps the AKLT ground state into 4 translation invariant
product states. The quasi-locality requirement matters.
In the same way, the integer spin chains with SO(2J + 1)
symmetry, introduced by Tu, Zhang, and Xiang, Phys. Rev. B
78, 094404 (2008), can be connected by a smooth curve of
models with a gap to the PVBS models with nL = nR = J . (
Bachmann-N, arXiv:1112.4097)
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Concluding comments
I There is a message in the boundary.

I The PVBS Hamiltonians are just toy models, but we
conjecture that a generalization of this class describes a
complete classification of gapped ground state phases in
one dimension.

I By requiring that a given set of symmetries are preserved
along the interpolating path one obtains automorphisms
that commute with these symmetries, which leads to a
finer classification.

I We are close to a comprehensive picture in one
dimension, but in two (and more) dimensions many
questions remain open.


