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One-dimensional case

Well-known martingale method has wide range of applications
in the theory of stochastic processes, particulary in problems
of convergence of sequences of random variables and in limit
theorems.

Definition. A stochastic sequence of random variables
ξ1, ξ2, ..., ξk, ... is called martingale if for any k ≥ 0

E |ξk| <∞ and E
(
ξk+1

/
σ (ξs,0 ≤ s ≤ k)

)
= ξk a.s.

We see that the notion of martingale is essentially used
the complete ordering property of real line. The absence of this
property in multidimensional structures doesn’t allow directly
extend the martingale method on this case. Nevertheless several
important results in this topic were obtained. These results laid
down the foundations of the theory of the multidimensional
martingales.



The main goal of our talk is to demonstrate how the
martingale method can be applied in the theory of Gibbs
random fields.



The definition of martingale in multidimensional case as
a rule uses monotone sequences of subsets of some set. The
choice of such sequences of subsets determines various classes
of multidimensional martingales.

We will consider a sequences of finite subsets of integer
lattice Zd. Let

W =
{
V ⊂ Zd, |V | <∞

}
{=V , V ∈W} — partially ordered set of σ-algebras, i.e.

=V ∈ =, V ∈W , Ṽ ⊂ V ⇒ =Ṽ ⊂ =V , =∅ = {∅,Ω}.

Definition. A stochastic family of random variables (SV ,=V )

is called a martingale if for any Ṽ , V ∈W , Ṽ ⊂ V we have

E |SV | <∞ and E
(
SV

/
=Ṽ

)
= SṼ a.s.



We will consider the martingales, which definition is based
on the notion of the martingale-difference random field, introduced
by Nahapetian and Petrosian in 1992.

Definition. A random field ξt, t ∈ Zd is called amartingale-
difference random field if for any t ∈ Zd

E |ξt| <∞ and E
(
ξt
/
σ
(
ξs, s ∈ Zd\ {t}

))
= 0 a.s.

We will consider only random fields with finite phase spaces.



Denote

SV =
∑
t∈V

ξt and =V = σ (ξt, t ∈ V ) , V ∈W.

If ξt, t ∈ Zd is a martingale-difference random field then
the family (SV ,=V ) , V ∈ W , forms a martingale with respect
to any sequence Vn ∈W,n = 1,2, ... of increasing finite subsets
of Zd.

Conversely, if for given random field ξt, t ∈ Zd a stochastic
family (SV ,=V ) , V ∈ W is a martingale with respect to any
sequence of increasing finite subsets, then this field is a martin-
gale-difference random field.



Constructions of martingale-difference random fields

Construction 1

Suppose that X ∈ R1 is a set symmetric with respect to
zero and let B (X) be the σ-algebra of its Borelian subsets.
Consider on B (X) a symmetric measure (i.e. µ (A) = µ (−A),
A ∈ B (X)). Let ξt, t ∈ Zd be a random field with phase space
X such that its finite-dimensional distributions are absolutely
continuous with respect to the product-measure µV , V ∈ W
with even densities pV (xt, t ∈ V ), V ∈W i.e.

pV (θtxt, t ∈ V ) = pV (xt, t ∈ V )

for any θt ∈ {1,−1}. Such a random field ξt, t ∈ Zd represents
a martingale-difference random field.



Construction 2

Consider a finite subset X of a real line R1 such that
X =

n⋃
k=1

Xk, Xi ∩Xj = ∅, i 6= j and

∑
x∈Xk

x = 0, k = 1, n.

Let there exists a random field ξt, t ∈ Zd taking values in X

such that its conditional distribution

qx̄t (x) = P
(
ξt = x

/
ξs = x̄s, s ∈ Zd\ {t}

)
x ∈ X, x̄ =

(
x̄s, s ∈ Zd\ {t}

)
∈ XZd\{t}, t ∈ Zd has the constant

value qx̄t,k when x ∈ Xk, k = 1, n, i.e.

qx̄t (x) = qx̄t,k, x ∈ Xk, k = 1, n.

Then the random field ξt, t ∈ Zd is a martingale-difference
random field.



Construction 3

Let T =
{
Tj
}
be a partition of the lattice Zd ( Zd =

⋃
j
Tj,

Tj ∩ Tk = ∅, j 6= k) and suppose that a random field ξt, t ∈ Zd

has the following property: for any j the random field ξt, t ∈ Tj
represents a martingale-difference, i.e. for any t ∈ Tj

E
(
ξt
/
σ
(
ξs, s ∈ Tj\ {t}

))
= 0 a.s.

If in addition the random variables ξs and ξr are independent
when s ∈ Tj, r ∈ Tk, j 6= k, then the random field ξt, t ∈ Zd is
a martingale-difference random field.



Gibbs martingale-difference random fields

Let ξt, t ∈ Zd be a Gibbs random field, corresponding to
the potential Φ , which components take values in symmetric
with respect to zero set X. If the potential Φ is even, i.e.

ΦV (θtxt, t ∈ V ) = ΦV (xt, t ∈ V ) , V ∈W

for each θt ∈ {1,−1}, then such a Gibbs random field is a
martingale-difference random field.

Examples of even potentials

ΦV (xt, t ∈ V ) =
∏
t∈V
|xt| · |V |γ

and

ΦV (xt, t ∈ V ) = exp

{
− sup
t∈V
|xt| · |V |γ

}

where γ ∈ R1, V ∈W , xt ∈ X, t ∈ V .
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Theorem (CPT) . Let ξt, t ∈ Zd be a homogeneous
ergodic martingale-difference random field such that
0 < σ2 = Eξ2

0 <∞ . Then

lim
n→∞P

(
SVn

σ · nd/2
< x

)
=

1√
2π

x∫
−∞

e−u
2/2du, x ∈ R1,

where Vn is a d-dimensional cube with side length n, n = 1,2, ....



For Gibbs random fields with symmetric with respect to
zero phase spaces there is a corollary from CLT for martingale-
difference random fields.

Corollary 1. Let Φ be an even translation-invariant potential
such that the corresponding Gibbs random field ξt, t ∈ Zd is
ergodic and Eξ2

0 > 0. Then for this Gibbs random field CLT is
valid.

Remark. Note that if Φ is an even translation-invariant
potential such that the corresponding Gibbs random field ξt,
t ∈ Zd is unique, than this field is ergodic and we can use
Corollary 1.



Corollary 2. Let Φ be an even translation-invariant potential
such that the corresponding Gibbs random field ξt, t ∈ Zd is
unique. Then for this random field local limit theorem is valid.



1. A new method of constructing martingale-difference
random fields



Randomization

X — finite set

p — probability distributions on X, i.e. p (x) ≥ 0, x ∈ X
and

∑
x∈X

p (x) = 1



Y — finite set

ϕ : Y → X — surjective map, i.e. each x ∈ X has no less
than one pre-image y ∈ Y



Y =
⋃
x∈X

ϕ−1 (x),

where ϕ−1 (x) = {y ∈ Y : ϕ (y) = x} — set of pre-images
of x, x ∈ X



R = {Rx, x ∈ X} — family of probability distribution on Y ,
each of which is concentrated on ϕ−1 (x), i.e.

Rx (y) ≥ 0, y ∈ Y,
∑
y∈Y

Rx (y) = 1,

Rx (y) = 0 if y /∈ ϕ−1 (x)



Then we have probability distribution on Y

p̂ (y) =
∑
x∈X

Rx (y) p (x), y ∈ Y.

Indeed,

p̂ (y) ≥ 0, y ∈ Y

and∑
y∈Y

p̂ (y) =
∑
x∈X

∑
y∈ϕ−1(x)

Rx (y) p (x) =

∑
x∈X

p (x)
∑

y∈ϕ−1(x)

Rx (y) =
∑
x∈X

p (x) = 1



Theorem 1. Suppose we are given the random field ξt,
t ∈ Zd with phase space X, finite set Y , surjective map ϕ and
the family R = {Rxt , x ∈ X} of probability distribution on Y ,
each of which is concentrated on ϕ−1 (x). Then there exist a
random field ηt, t ∈ Zd with phase space Y such that

ξt = ϕ (ηt) , t ∈ Zd

and for any V ∈W

P (ηt = yt, t ∈ V ) =
∏
t∈V

Rxtt (yt) · P (ξt = xt, t ∈ V ) ,

yt ∈ Y , xt ∈ X, t ∈ V .

Definition. A random field ηt, t ∈ Zd for which

ξt = ϕ (ηt) , t ∈ Zd,

we will call associated with random field ξt, t ∈ Zd (by the
means of the map ϕ).



Remarks

1)Associated random field is not necessary unique

2) By imposing certain conditions on Y , ϕ and Rt = {Rxt , x ∈ X},
t ∈ Zd we will obtain different associated random fields with
certain properties.



Associated martingale-difference random fields

Theorem 2. Let ξt, t ∈ Zd be a random field with phase
space X, let ηt, t ∈ Zd be a random field with phase space Y
associated with ξt, t ∈ Zd by the means of the map ϕ, and let
Rt = {Rxt , x ∈ X}, t ∈ Zd be the corresponding to ηt, t ∈ Zd

families of probability distributions. If for any x ∈ X and t ∈ Zd

∑
y∈ϕ−1(x)

y ·Rxt (y) = 0,

then the random field ηt, t ∈ Zd is a martingale-difference
random field.



If families of probability distributions Rt = {Rxt , x ∈ X},
t ∈ Zd are such that

Rxt (y) =


1

|ϕ−1(x)|, y ∈ ϕ−1 (x)

0, y /∈ ϕ−1 (x)

x ∈ X, y ∈ Y , t ∈ Zd, then it is sufficient to claim that a set Y
and a map ϕ be such that∑

y∈ϕ−1(x)

y = 0,

for any x ∈ X.



Randomization of Gibbs random fields

Theorem 3. Let ξt, t ∈ Zd be a Gibbs random field. Then
a random field ηt, t ∈ Zd associated with ξt, t ∈ Zd is also a
Gibbs random field.



Theorem 4. Let ξt, t ∈ Zd be a Gibbs random field with
phase space X and potential Φ (xtxV ), xt ∈ X, xV ∈ XV , t ∈ Zd,
V ∈W

(
Zd\t

)
. Let there exists a partition of X

X =
n⋃

k=1

Xk, Xi ∩Xj = ∅, i 6= j,

such that ∑
x∈Xk

x = 0, k = 1, n

and the potential Φ (xtxV ) has the constant value on the
elements of partition of X, i.e.

Φ (xtxV ) = Φk (xV ) ,

xt ∈ Xk, k = 1, n. Then the Gibbs random field ξt, t ∈ Zd is a
martingale-difference random field.



Note that symmetric with respect to zero phase space and
even potential satisfy conditions of Theorem 4.

Corollary 3 (CLT). Let ξt, t ∈ Zd be a translation-invariant
ergodic Gibbs random field with phase space X and potential Φ

which are satisfy the conditions of Theorem 4. If also Eξ2
0 > 0

then for this random field CLT is valid.

Corollary 4 (LLT). Let ξt, t ∈ Zd be a translation-invariant
ergodic Gibbs random field with phase space X and potential Φ

which are satisfy the conditions of Theorem 4. If also Eξ2
0 > 0

then for this random field local limit theorem is valid.



3. Example of applying the randomization method to
some Gibbs random field



Ising model

Φ{t,s} (xt, xs) =


xt · xs, |t− s| = 1,

0, |t− s| 6= 1,

where xt, xs ∈ X = {−1,1} and |t− s| = max
1≤i≤d

∣∣∣t(i) − s(i)
∣∣∣.



Phase diagram for the Ising model
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Model with even potential

Φ̃{t,s} (yt, ys) =


|yt| · |ys| , |t− s| = 1,

0, |t− s| 6= 1,

t, s ∈ Zd,

where yt, ys ∈ Y = {−1,0,1}.

x = 2 |y| − 1



Phase diagram for the model with even potential

Coordinates of critical point for model with even potential

β∗cr = 4βcr and h∗cr = −β∗crd+ ln 2.



The connection formulas of total spins probability distribution

Denote for V ∈W
SIsV — total spin of the Ising model
SevV — total spin of the model with even potential

P
(
SevV = k

)
=

(|V |−k)/2∑
j=0

(
k + 2j

2j

)
2k+2jP

(
SIsV = k + 2j

)
,

k ≥ 0



P
(
SIsV = k

)
= 2−k

[
P
(
SevV = k

)
−

−
(|V |−k)/2∑

j=1

(
k + 2j

2j

)
P
(
SevV = k + 2j

)
+

+
(|V |−k)/2∑

j=1

(
k + 2j

2j

)
22j×

×
(|V |−k)/2−j∑

s=1

(
k + 2 (j + s)

2s

)
22sP

(
SevV = k + 2 (j + s)

)
−

−
(|V |−k)/2∑

j=1

(
k + 2j

2j

)
22j

(|V |−k)/2−j∑
s=1

(
k + 2 (j + s)

2s

)
22s×

×
(|V |−k)/2−j−s∑

l=1

(
k + 2 (j + s+ l)

2l

)
22lP

(
SevV = k + 2 (j + s+ l)

)
+ ...





ξt, t ∈ Zd — the homogenous random field, X = {0,1}

ηt, t ∈ Zd — associated random field, Y = {−1,0,1} such
that

ξt = |ηt| , t ∈ Zd

and for any t ∈ Zd

P (ηt = ±1) =
1

2
P (ξt = 1) , P (ηt = 0) = P (ξt = 0) .

The random field ηt, t ∈ Zd is a martingale-difference because∑
y∈ϕ−1(x)

y = 0, for any x ∈ X.

Connection formula for finite-dimensional probability distributions

P (ηt = yt, t ∈ V ) = 2−|V |P (ξt = xt, t ∈ V ) ,

yt ∈ Y , xt ∈ X, t ∈ V , V ∈W .



The connection formulas of
total spines probability distributions

P
(
S
η
V = 2s

)
=
|V |/2∑
j=s

2−2j
(

2j
j − s

)
P
(
S
ξ
V = 2j

)
,

s = 0,1, ..., |V |/2,

P
(
S
η
V = 2s− 1

)
=
|V |/2∑
j=s

2−2j+1
(

2j − 1
j − s

)
P
(
S
ξ
V = 2j − 1

)
,

s = 1,2, ..., |V |/2,

P
(
S
η
V = −s

)
= P

(
S
η
V = s

)
,

s = 1,2, ..., |V |,

for any V ∈W .



P
(
S
ξ
V = j

)
= 2j

|V |−j
2∑

k=0

(−1)k
j + 2k

j + k

(
j + k
k

)
P
(
S
η
V = j + 2k

)
,

j = 0,1, ..., |V |,

for any V ∈W .



Characteristic function of the total spin of associated r.f.
by means of total spin probabilities of given r.f.

fSηV
(t) =

|V |∑
j=0

(cos t)j P
(
S
ξ
V = j

)
,

V ∈W .



CLT for associated random field

Theorem 5. Let ηt, t ∈ Zd be a martingale-difference
random field associated with random field ξt, t ∈ Zd. Then

f S
η
V√
DS

η
V

(t)→ e−t
2
/

2, as V ↑ Zd.



Proof.

f S
η
V√
DS

η
V

(t) =
|V |∑
j=0

(
cos t√

p|V |

)j
P
(
S
ξ
V = j

)
=

=
|V |∑
j=0

(
1− j · t2

2p|V | + j · o
(
|V |−2

)
+ o

(
|V |−4

))
P
(
S
ξ
V = j

)
=

= 1− t2

2p|V |ES
ξ
V + o

(
|V |−2

)
ES

ξ
V + o

(
|V |−4

)
=

= 1− t2

2p|V |p |V |+ o
(
|V |−2

)
p |V |+ o

(
|V |−4

)
=

= 1− t2

2 + o
(
|V |−1

)
=

= e−t
2
/

2 + o (1) .



Characteristic function of total spin of given r.f.
by means of total spin probabilities of associated r.f.

f
S
ξ
V

(t) =
|V |∑

j=−|V |
cos

(
j · arccos eit

)
P
(
S
η
V = j

)

V ∈W .



CLT for the Ising model outside the critical point

Theorem 6. Let ξt, t ∈ Zd be a Gibbs random field
corresponding to Ising model and let ηt, t ∈ Zd be associated
with ξt, t ∈ Zd martingale-difference random field. If exists the

limit lim
V ↑Zd

DS
ξ
V

|V | = σ2 and 0 < σ2 <∞ then

f
S
ξ
n−MS

ξ
n√

DS
ξ
n

(t)→ e−t
2
/

2 as V ↑ Zd.



Proof

f
S
ξ
n√
DS

ξ
n

(t) = f
S
ξ
n

σ
√
|V |

(t) =
|V |∑

j=−|V |
cos

(
j · arccos e

it
σ
√
|V |

)
P
(
S
η
V = j

)
=

=
n∑

j=−n

(
1 +

(
it

σ
√
|V |
− t2

3σ2|V |

)
j2 − t2

6σ2|V |j
4 + o

(
|V |−3/2

))
P
(
S
η
V = j

)
=

= 1 +
(

it
σ
√
|V |
− t2

3σ2|V |

)
E
(
S
η
V

)2
− t2

6σ2|V |E
(
S
η
V

)4
+ o

(
|V |−3/2

)
=

= 1 +
(

it
σ
√
|V |
− t2

3σ2|V |

)
p |V | − t2

6σ2|V |

(
3σ2 |V |+ 3p2 |V |2 − 2p |V |

)
+

+o
(
|V |−3/2

)
→ eit

p
σ

√
|V |−t

2
2

Then

f
S
ξ
n−|V |p
σ
√
|V |

(t) = e−it
p
σ

√
|V |·f

S
ξ
n

σ
√
|V |

(t)→ e−it
p
σ

√
|V |·eit

p
σ

√
|V |−t

2
2 = e−t

2
/

2



Thank you for your attention!


