Limiting behaviour of two-dimensional self-avoiding polygons

Ostap Hryniv

Dept. of Mathematical Sciences

Durham University

Ostap.Hryniv@durham.ac.uk

IX International Conference

Stochastic and Analytic Methods in Mathematical Physics

Yerevan, Armenia, September 3–8, 2012

Outline

- Model
- Motivation
- Results and Ideas
- Conclusions

Self-avoiding polygons

A SAP is a **closed** loop $\omega = (\omega_0, \omega_1, \dots, \omega_n)$, with $\omega_j \in \mathbb{Z}^2$, $j \geq 0$,

$$\omega_0 = \omega_n$$
, $|\omega_k - \omega_{k-1}| = 1$ $\forall k = 1, 2, ..., n$, $\omega_j \neq \omega_k$ $\forall 0 \leq j < k \leq n$

and $|\omega|=n$ is the length of ω .

[cf. V.Betz's talk!]

Probability distribution:

$$\mathsf{P}_{eta}(oldsymbol{\omega}) arpropto \expigl(-eta|oldsymbol{\omega}|igr\}\,, \qquad eta > 0\,.$$

AIM: statistical properties of 2D SAPs enclosing large area Q.

SAP: centering

Consider $\mathcal{Z}^{\odot}\equiv\left\{\omega: \text{centered at 0}\right\}$, i.e., $Q_1=Q_3$, $Q_2=Q_4$, where

Then

$$\mathbf{P}_{eta}(oldsymbol{\omega}) = rac{1}{Z_{eta}} \expig\{-eta|oldsymbol{\omega}|ig\}\,, \qquad Z_{eta} = \sum_{oldsymbol{\omega} \in \mathcal{Z}^{\odot}} \expig\{-eta|oldsymbol{\omega}|ig\}$$

is well defined for each $\beta > \bar{\beta}_{\rm cr}$.

Model

Consider:

$${\cal Z}_Q^\odot\equivig\{\omega:$$
 centered at 0, enclosed area $Qig\}$ i.e., $Q_1=Q_3,\;Q_2=Q_4,\;Q_1+Q_2+Q_3+Q_4=Q.$

AIM: for fixed $\beta>\bar{\beta}_{\rm cr}$, in the limit $Q\to\infty$, evaluate

$$Z_Q^\beta = \sum_{\omega \in \mathcal{Z}_Q^{\odot}} \exp \left\{ -\beta |\omega| \right\},$$

and describe

$$\mathbf{P}_{eta}(\,\cdot\,|\mathcal{Z}_Q^{\odot})$$
 .

Remarks

- A similar question can be asked about other 2D polygons, e.g., phase boundaries of finite-range models [Pirogov-Sinai?]
- we develop the geometric part of the sharp large deviation theory for some of these models, e.g., low-temperature 2D Ising
- some results can also be extended to higher temperatures

Ising model: large deviations

Gibbs probability distribution in $\Omega_V \equiv \{-1, +1\}^V$, $V \in \mathbb{Z}^2$:

$$\mathbb{P}_{V}^{\beta}(\sigma) = \frac{1}{Z(V,\beta)} \exp \Big\{ \beta \sum_{\substack{\langle x,y \rangle \\ x,y \in V}} \sigma_{x} \sigma_{y} \Big\} \,, \qquad \beta > 0 \,, \sigma \in \Omega_{V} \,.$$

Q.: distribution of $S_V = \sum_{x \in V} \sigma_x$ under $\mathbb{P}_V^{\beta}(\cdot)$ as $V \uparrow \mathbb{Z}^2$? typical σ under $\mathbb{P}_V^{\beta}(\cdot \mid S_V)$?

more precisely: fix a_V s.t. $a_V \simeq c|V|$, |c| < 1, $a_V \equiv |V| \pmod 2$

asymptotics of
$$\mathbb{P}_V^{\beta}(S_V=a_V)$$
 as $V\uparrow\mathbb{Z}^2$? typical σ under $\mathbb{P}_V^{\beta}(\cdot\mid S_V=a_V)$?

2D Ising model: phase transition

 $^\exists eta_{\operatorname{cr}} \in (0,\infty) \text{ s.t.:}$

[cf. L.Khachatrian's talk!]

- $\beta < \beta_{\mathsf{cr}}$: unique limit μ of $\mathbb{P}_V^{\beta}(\,\cdot\,)$ as $V \uparrow \mathbb{Z}^2$
- $\beta > \beta_{\rm cr}$: limit depends on b.c.; each such μ is a convex combination of μ^+ and μ^- , where

$$\mu^{\pm} = \lim_{V \uparrow \mathbb{Z}^2} \mathbb{P}_V^{\beta, \pm}(\,\cdot\,)\,,$$

$$\mathbb{P}_{V}^{\beta,\pm}(\sigma) = \frac{\exp\{\pm\beta\sum_{x\in\partial V}\sigma_{x}\}}{Z(V,\beta,\pm)}\,\mathbb{P}_{V}^{\beta}(\sigma)\,;$$

in particular, $m_{\beta} \equiv \langle \sigma_0 \rangle_{\mu^+} > 0$ iff $\beta > \beta_{\rm cr}$.

DKS theory (Dobrushin-Kotecký-Shlosman ['92])

 $V=V_N\equiv T_N$, $\bar{\sigma}$ — periodic b.c., $0<eta<\infty$ — "large"

ullet provides the asymptotics of $\mathbb{P}_N^{eta,\mathrm{per}}ig(S_N=a_Nig)$ as $N o\infty$

• describes "typical configurations" corresponding to such event: as $N \to \infty$,

Theorem [DKS'92]

Let $ho_N \equiv \frac{a_N}{N^2}
ightarrow
ho \in \left(
ho_0, m_{eta}\right)$ as $N
ightarrow \infty$ with $ho_0 > 1/2$. Then $^\exists$ positive constants $eta_0(
ho_0)$, K, and κ , such that $^\forall \beta \geq \beta_0$ the following holds with probability ightarrow 1 (as $N
ightarrow \infty$):

- \exists ! macroscopic contour Γ_0 (of correct sign)
- its area satisfies

$$\left|\left|\operatorname{Int}(\Gamma_0)\right| - \lambda_N N^2\right| \le K N^{6/5} (\log N)^{\kappa}$$

with $\lambda_N = 1/2 - a_N/2m_\beta N^2$;

• $\exists x = x(\sigma)$ s.t.

$$\operatorname{dist}_{H}(\Gamma_{0} + x(\sigma), N\gamma_{\beta,\rho_{N}}) \leq KN^{3/4}(\log N)^{3/2},$$

 γ_{β,ρ_N} being the Wulff shape of "phase volume" ρ_N ;

• all other contours have size $\leq K \log N$.

Wulff theory

surface tension

$$\tau_{\beta}(\,\cdot\,) = \lim_{N \to \infty} \lim_{M \to \infty} \frac{\cos \varphi}{\beta N} \log \frac{Z(V_{NM}, \beta, +)}{Z(V_{NM}, \beta, \bar{\sigma}^{\varphi})}$$

• Wulff functional (surface energy) γ – closed self-avoiding rectifiable curve in \mathbb{R}^2

$$\gamma\mapsto \mathcal{W}_eta(\gamma)=\int_\gamma au_eta(ec{ extbf{n}}_s)\,ds$$

• Wulff variational problem

$$\mathcal{W}_{\beta}(\gamma) \longrightarrow \inf: \qquad \mathsf{Vol}(\gamma) \geq 1 \qquad \qquad (*)$$

- Wulff shape $\gamma = \gamma_1$ the (unique) solution to (*)
- Wulff construction [Wulff 1901] :

Wulff shape = boundary of W_{λ_0} s.t. $Vol(W_{\lambda_0}) = 1$ and

$$W_{\lambda} \equiv \bigcap_{\vec{r} \in \mathbb{N}^1} \left\{ x \in \mathbb{R}^2 : (x, \vec{n}) \leq \lambda \tau_{\beta}(\vec{n}) \right\}$$

Corollary

Under the conditions of the theorem above, $\exists \alpha \in (0,1)$ s.t.

$$\mathbb{P}_{N}^{eta,\mathsf{per}}ig(S_N=a_Nig)=\mathsf{exp}\Big\{-eta N\mathcal{W}_eta(\gamma_{eta,
ho_N})+o(N^lpha)\Big\}$$

as $N \to \infty$; here $\mathcal{W}_{\beta}(\gamma_{\beta,\rho_N})$ is the surface energy of the Wulff shape γ_{β,ρ_N} .

generalized to all $\beta > \beta_{cr}$ in loffe-Schonmann ['98]

SAP: ideas

Self-avoiding plygons in \mathbb{Z}^2 , "centered at the origin":

condition on the "parts on the diagonals", then re-sum

Step I: a single-quarter problem $\mathcal{Z}_Q^{a,b}$

- vertical strip + (free) diagonal ends
- renewal type analysis on <u>micro</u> scale
- cluster expansions + renormalisation
- key property: to massgap positivity [Chayes-Chayes '86, loffe '98]
- ⇒ Ornstein-Zernike asymptotics [LLT]

SAP: Step I

Key result:

$$Z_Q^{a,b} = \sum_{\omega} \exp igl\{ -eta |oldsymbol{\omega}| igr\} pprox c rac{\sqrt{D}}{Q} \exp igl\{ -W(a,b,Q) igr\} \,,$$

as $Q \to \infty$, where $D = \det \operatorname{Hess}_{a,b} W(\cdot, \cdot, Q)$.

[LLT; Ornstein-Zernike behaviour; cf. A.Pellegrinotti's talk!]

Also:

surface energy $W(\cdot,\cdot,Q)$ is symmetric, smooth, strictly convex.

Step II: macroscopic variational problem

Minimise

$$W(a,b,Q_1) + W(b,c,Q_2) + W(c,d,Q_3) + W(d,a,Q_4)$$
 subject to

$$Q_1 = Q_3 \,, \qquad Q_2 = Q_4 \,, \qquad Q_1 + Q_2 + Q_3 + Q_4 = Q \,.$$

symm.
$$+$$
 convexity \Longrightarrow $a=b=c=d\equiv \bar{
ho}$ smoothness \Longrightarrow $Q_1=Q_2=Q_3=Q_4\equiv Q/4$

 \implies optimal shape – **Wulff droplet**, area Q, "diag. diam." $2\bar{\rho}$

Asymptotics of Z_Q^{β}

III step: sum over all contours in \mathcal{Z}_Q^\odot

$$\mathbf{P}_{eta}ig(\mathcal{Z}_Q^\odotig)pprox c\ Q^{-5/2}\expig\{-\sqrt{Q}\mathcal{W}_1ig\}\,.$$

IV step: local entropy factor $\asymp ar{
ho}^2 \asymp Q$.

Thm 1: $\forall \beta > \beta_{cr}$ fixed, as $Q \to \infty$:

$$Z_Q^{eta} = \sum_{m{\omega} \in \mathcal{Z}_Q^{m{\omega}}} e^{-eta |m{\omega}|} pprox c \ Q^{-3/2} \exp \left\{-\sqrt{Q} \mathcal{W}_1
ight\}.$$

SAP: fluctuations

Consider $X_Q(s)$, $s \in [0, \overline{I}]$, — $Q^{-1/4}$ -scaled **normal fluctuations** of $\omega \in \mathcal{Z}_Q^{\circ}$ around the Wulff shape \mathcal{W}_Q at the origin

SAP: fluctuations

Let

$$d\,\xi(s) = \frac{1}{\sqrt{\beta(\tau_{\beta}(\vec{n}_s) + \tau_{\beta}''(\vec{n}_s))}}\,dw(s)$$

 $\bar{\it I}$ – length of $\partial \mathcal{W}_1$

 $q_i = \int_{\gamma_i} \xi(s) \, ds$

x(s) – periodic Gibbs field on $\mathbf{T}_{[0,\overline{l}]}$ (i.e. periodic extension of $\xi(s)$) on the event

$$\odot \equiv \big\{ q_1 = q_3, q_2 = q_4, q_1 + q_2 + q_3 + q_4 = 0 \big\}$$

Thm 2: \forall fixed $\beta > \beta_{\rm cr}$, as $Q \to \infty$, the distribution of $X_Q(s)$ converges to that of x(s).

SAP: remarks

possible extensions to other 2D models:

- low-temperature Ising model [in preparation]
- finite range (Pirogov-Sinai?) models
- Ising at all subcritical temperatures [with R.Kotecký, D.loffe; in progress]
- moderate deviations for the Ising model [with R.Kotecký, D.loffe; in progress]
- . . .

Conclusions

main results:

- sharp asymptotics of the partition function
- functional CLT for normal fluctuations from the Wulff shape
- results valid for all $\beta > \beta_{cr}$

main tools:

- variational calculus [Wulff construction]
- analytic perturbations theory [cluster expansions]
- local limit theorems
- renormalization [mesoscopic scale]
- . . .