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What is a matroid?
What is it good for?

v
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A matroid is a collection of subsets with nice properties.
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These subsets can index interesting sums.
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What is a simplex?

A simplex consists of all subsets of a set Y.
The dimension of the simplex is #Y — 1.
Example of a 1 dimensional simplex:

face set {0, {a}, {b},{a, b}}.
facet set {{a, b}}
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Example of a 2 dimensional simplex:

face set {0,{a}, {b},{c},{a, b},{b,c},{a,c}, {a, b,c}}.

facet set {{a, b, c}}
c
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What is a complex?

A complex on ground set E is a family of subsets that is downward closed.
Example of a 1 dimensional complex:

face set {0, {a}, {b}, {c},{a, b}, {b. c}, {a,c}}.

facet set {{a, b}, {b,c},{a,c}}.

c
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Example of a 2 dimensional complex:

face set

{0,{a}, {b},{c},{d},{a, b}, {b,c},{a,c}, {b,d} {c,d},{a, b, c}, {b,c, d}}.
facet set {{a, b, c},{b, c,d}}.
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Abstract complexes
If Y is a set, then the power set

PlY]={X|XC Y.

A downward closed collection L is a collection £ C P[E] such that
» YeLl, XCY implies X € L.

A complex A is a ground set E together with a collection

face(A) C P[E]. The only axiom is
» face(A) is downward closed.

Aset X C E is a face of A if X € face(A).
A set X C E is a facet of A if it is a maximal face of A.
The dimension of a face X is

dim(X) = #X — 1.

For each ground set E there is a void complex with no faces.
If the complex A is not void, then @ € face(A).
If A is not void, then

dim(A) = max{dim(X) | X € facet(A)}.



The Euler characteristic
Define the reduced Euler characteristic of A by
X(a)= > (-nmMm.
Y eface(A)

Previous example of a 1 dimensional complex:

face set {0,{a}, {b},{c},{a, b},{b,c}, {a,c}}.
x(A)=-14+3-3=-1.
c
aA b
Previous example of a 2 dimensional complex:
face set

{0,{a}, {b}, {c}, {d},{a b}, {b,c},{a,c}, {b.d},{c.d},{a,b,c},{b,c,d}}.
X(A)=—-1+4-5+2=0.



Pure complexes

A complex is pure if every facet has the same dimension.

Example of a 2 dimensional complex that is not pure:

face set

{0,{a},{b},{c}.{d}.{a, b},{b,c} {a,c},{b,d} {c,d} {a,b,c}}.
facet set {{a, b,c},{b,d},{c,d}}.

x(A)=-1+4-5+1=-1.



Complexes: 4 point ground set, dim= 2
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Complexes: 4 point ground set, dim= 2 (more)
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Complexes: 4 point ground set, dim=1
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Complexes: 4 point ground set, dim= 1 (more)
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Complexes: 4 point ground set, dim= 1 (yet more)
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What is a matroid?

The complex A is pure if it is not void and every facet has the same
dimension.

If Ais a complex with ground set E, and K C E, then the restriction
A|K is the complex with ground set K and

face(A|K) = {X C K | X € face(A)}
A matroid is a complex A = (E, face(A)) that satisfies the following
additional axiom.
» For every K C E, the restricted complex A|K is pure.

For matroids the terminology is different. Suppose M is a matroid. Then

> A face is an independent set. Z(M) is the collection of independent
sets.

> A facet is a basis. B(M) is the collection of bases.



Restrictions of a 1-dimensional matroid

Restrictions from 4 points to 3,2,2,1 point subsets:

L.
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Geometric representation of matroids

For X C E define dim(X) = dim(M|X). Every subset has a dimension.
If X is independent, then M|X = P[X] and dim(X) = #X — 1.

Every matroid has a geometric representation. This involves:
Dependent points of dimension —1.

Multiple points of dimension 0.

Lines of dimension 1.

Planes of dimension 2.

Etc.
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A set X is dependent if it has:
» 1 or more dependent points.
» 2 or more points in a multiple point class.
» 3 or more points in a line.
» 4 or more points in a plane.
» Etc.



Matroids: 4 point ground set, dim= 2
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Matroids: 4 point ground set, dim=1




Matroids: 4 point ground set, dim= 1 (more)
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The 7-point projective plane

7 points, 7 lines in plane
two-dimensional: (%) — 7 = 35 — 7 = 28 bases each with 3 points




The 6-point complete quadrilateral

6 points, 4 lines in plane
two-dimensional: (2) — 4 =20 — 4 = 16 bases each with 3 points




The 5-point intersecting lines

5 points, 2 lines in plane
two-dimensional: (3) — 2 = 10 — 2 = 8 bases each with 3 points




4 and 3 point restrictions

4 points, 1 line in pIane
Two-dimensional: —1=4—1 =3 bases (3 points).

A *———o—o °
3 points, 1 line.

One-dimensional: (3) = 3 bases (2 points)
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Independent sets, bases, spanning sets

For each matroid M there are various collections of sets
» X € Z(M) is an independent set if X is a subset of a basis.

> X € B(M) is a basis if it is a maximal independent set or a minimal
spanning set.

> X € §(M) is a spanning set if it is a superset of a basis.



Matroid duality

For each matroid on E there is a dual matroid M*.

» X € I(M) is equivalent to £\ X € S(M*).

» X € B(M) is equivalent to E \ X € B(M*).

> X € S(M) is equivalent to E\ X € Z(M*).
For an example, take the matroid M with ground set E = {1,2,3,4}. It
may be characterized by:

» B(M) ={{1,3},{2,3},{3,4}}.
x(M)=-1+4-3=0.
The dual matroid has ground set E = {1,2,3,4}.
» B(M*) = {{2,4},{4,1},{1,2}}.
x(M*)=-143-3=-1.



Dual matroids
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Resummation and topology

Let M be a matroid. Then there exists a function R : B(M) — Z(M)
with

> e=> (Il « II a+w
YeI(M)LeY XeB(M) \LeR(X) LeX\R(X)
Recall the reduced Euler characteristic of M:
X(M)= Y (~1)dm™).
YeZ(M)
Take all t; = —1. Then
X(M) = (=1)9#{X € B(M) | R(X) = X},
It follows that
IX(M)| < #B(M).

The reduced Euler characteristic is bounded by the number of facets.
For a matroid, the topology is dominated by top dimension.



The uniform matroid Uy,

The uniform matroid is M = Uy . It has ground set E with #E = n.
> Independent sets: Z(Uy n) = {X | #X < k}
> Basis sets: B(Uk,n) = {X | #X = k}
» Spanning sets: S(Uxn) = {X | #X > k}

Uz s

Us,a




Euler characteristic of Uy ,

- $0()

Jj=0

U = (7).

[llustrates: For a matroid, the topology is dominated by top dimension.



Inclusion-exclusion

Take each ¢, =0 or 1.
Inclusion-exclusion with three sets:

l-a)l-ao)(l-ag)=l-a—-ao—-—agt+aoagtaa+aa—cacc

Inclusion-exclusion with n sets.

[Ta-c)=> * ][] e

LeE YCE Ley



Resummation for spanning sets

There exists a function S : B(M) — S(M) with

o M= > (It II a+w

YES(M) LeY XeB(M) \LeX  LeS(X)\X

A huge sum of products is written as a smaller sum of products.
Rewrite with ¢, = —ty.

S0 [[ea= (1) Z [T ] a-<)

YeS(M) ey XeB(M) \LeX  LeS(X)\X



The tail for Uy,

For each ¢ € E let ¢, be 0 or 1. Take t; = —c¢y in the distributive law.
Then

SED [Ja=E0 > ([Ie I -«

#Y>k tey #X=k \LeX (LeS(X)\X

The right hand side has known sign (—1)*. This is the Bonferonni result
for the tail in the inclusion-exclusion formula. This also gives an estimate
for the tail of an alternating sum.

P [T el < > [T e

#Y>k Ley #X=k LeX



The tail for Up3
U, 3 has spanning sets {2, 3},{1,3},{1,3},{1,2,3}.
U, 3 has basis sets {2,3},{1,3},{1,3}.

-Ao—o—o

Take each ¢, =0 or 1.
The tail is a sum over spanning sets; write as sum over basis sets:

oataa+acn—aaa=qa+aa+acn(l—c)

All terms are positive.




The graphic matroid M(K,,)

Let V be a set with #V = n points (particles).

Let let E be the set of all two-element sets of V, so #E = (3). The
complete graph K, has vertex set V and edge set E(K,) = E.

A simple graph G on vertex set V is specified by its edge set E(G) C E.
Define the matroid M = M(K,,) with ground set E and

> X € Z(M) iff X = E(G) for G a forest graph (no cycles) on V.
» X € B(M) iff X = E(G) for G a tree graph on V.
» X € S(M) iff X = E(G) for G a connected graph on V.

We have dim(M) = n — 1 and #B(M) = n"~2. Note that

#S(M) > 2(5) (1),

If E has n points, the reduced Euler characteristic is

X(M) = (=1)""H(n = 1)L.



The graphic matroid M(K;)

The vertex set has #V = 4; the edge set has #E = 6.

An edge in the graph is a point in the matroid.

The number of X C E with #X =0,1,2,3,4,5,6 is 1,6, 15,20,15,6, 1.
> Trees: #B(M) = 4% = 16 (of 20).
> Forests: #7(M) =146+ 15+ 16 = 38.
» Connected graphs: #S(M) =146+ 15+ 16 = 38.

Each tree has 3 edges; that is, each basis has three points.



Independent sets, spanning sets, bases in M(K;)

.
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Three-element non-bases in M(K;)

N7 AN

Replace edges by points, triangles by lines:




The graphic matroid M(Ks)

The vertex set has #V = b5; the edge set has #E = 10.
An edge in the graph is a point in the matroid.

>

Four-edge trees are four-point basis sets.

» The number of independent four-point sets is #B(M) = 53 = 125.

Geometric description: 3 edge triangles are 3 point lines; 6 edge
complete subgraphs are 6 point planes.

There are 10 lines and 5 planes.

A four-point set is dependent if it has 3 collinear points, or 4
non-collinear points in a plane.

The number of dependent four-point sets is 10-7 + 5 -3 = 85.



Lines and planes in M(Ks)

10 of these:
[ ]
AN

Replace edges by points, triangles by lines:

5 of these:

Replace edges by points, triangles by lines:




Four-element non-bases in M(Ks)
70 with three of four points on a line:

AN

Replace edges by points, triangles by lines:

15 with four of four points in a plane:

Replace edges by points, triangles by lines:




Geometry of M(Ks)




Penrose tree bound for connected graph sums of M(K},)

Connected graph sums are used to calculate pressure, density, etc. Here
E = E(K,) is the set of pairs of particles, ¢ denotes a pair of particles,
0 <V, < +0 is their potential energy, 3 is the inverse temperature,
exp(—(V}) is a Boltzmann factor. A key quantity is

ty = exp(—BVy) —

Thus =1 < t, <O0.

> I w= > II = I a+w

Geconn[V] L€E(G) Tetree[V] \L€E(T) (€S(E(T))\E(T)
> I el > ]
Geconn[V] L€E(G) Tetree[V] L€E(T)

The connected graph sum is bounded by the tree sum.



The fundamental theorem of calculus for a matroid

» William G. Faris, The fundamental theorem of calculus for a
matroid, J. Math. Phys. 53, 063305 (2012).

» A more sophisticated resummation: involves iterated fundamental
theorem of calculus for many variables.

> Generalizes work of Brydges-Kennedy-Abdesselam-Rivasseau.



