
Matroids and Resummation

Matroids and Resummation

I What is a matroid?

I What is it good for?

I A matroid is a collection of subsets with nice properties.

I These subsets can index interesting sums.
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What is a simplex?

A simplex consists of all subsets of a set Y .
The dimension of the simplex is #Y − 1.
Example of a 1 dimensional simplex:
face set {∅, {a}, {b}, {a, b}}.
facet set {{a, b}}
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Example of a 2 dimensional simplex:
face set {∅, {a}, {b}, {c}, {a, b}, {b, c}, {a, c}, {a, b, c}}.
facet set {{a, b, c}}
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What is a complex?

A complex on ground set E is a family of subsets that is downward closed.
Example of a 1 dimensional complex:
face set {∅, {a}, {b}, {c}, {a, b}, {b, c}, {a, c}}.
facet set {{a, b}, {b, c}, {a, c}}.
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Example of a 2 dimensional complex:
face set
{∅, {a}, {b}, {c}, {d}, {a, b}, {b, c}, {a, c}, {b, d}, {c , d}, {a, b, c}, {b, c , d}}.
facet set {{a, b, c}, {b, c , d}}.
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Abstract complexes
If Y is a set, then the power set

P[Y ] = {X | X ⊆ Y }.

A downward closed collection L is a collection L ⊆ P[E ] such that

I Y ∈ L, X ⊆ Y implies X ∈ L.

A complex ∆ is a ground set E together with a collection
face(∆) ⊆ P[E ]. The only axiom is

I face(∆) is downward closed.

A set X ⊆ E is a face of ∆ if X ∈ face(∆).
A set X ⊆ E is a facet of ∆ if it is a maximal face of ∆.
The dimension of a face X is

dim(X ) = #X − 1.

For each ground set E there is a void complex with no faces.
If the complex ∆ is not void, then ∅ ∈ face(∆).
If ∆ is not void, then

dim(∆) = max{dim(X ) | X ∈ facet(∆)}.



The Euler characteristic
Define the reduced Euler characteristic of ∆ by

χ(∆) =
∑

Y∈face(∆)

(−1)dim(Y ).

Previous example of a 1 dimensional complex:
face set {∅, {a}, {b}, {c}, {a, b}, {b, c}, {a, c}}.
χ(∆) = −1 + 3− 3 = −1.
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Previous example of a 2 dimensional complex:
face set
{∅, {a}, {b}, {c}, {d}, {a, b}, {b, c}, {a, c}, {b, d}, {c , d}, {a, b, c}, {b, c , d}}.
χ(∆) = −1 + 4− 5 + 2 = 0.
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Pure complexes

A complex is pure if every facet has the same dimension.
Example of a 2 dimensional complex that is not pure:
face set
{∅, {a}, {b}, {c}, {d}, {a, b}, {b, c}, {a, c}, {b, d}, {c , d}, {a, b, c}}.
facet set {{a, b, c}, {b, d}, {c , d}}.
χ(∆) = −1 + 4− 5 + 1 = −1.
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Complexes: 4 point ground set, dim= 2
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Complexes: 4 point ground set, dim= 2 (more)
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Complexes: 4 point ground set, dim= 1
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Complexes: 4 point ground set, dim= 1 (more)
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Complexes: 4 point ground set, dim= 1 (yet more)
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What is a matroid?

The complex ∆ is pure if it is not void and every facet has the same
dimension.
If ∆ is a complex with ground set E , and K ⊆ E , then the restriction
∆|K is the complex with ground set K and

face(∆|K ) = {X ⊆ K | X ∈ face(∆)}

A matroid is a complex ∆ = (E , face(∆)) that satisfies the following
additional axiom.

I For every K ⊆ E , the restricted complex ∆|K is pure.

For matroids the terminology is different. Suppose M is a matroid. Then

I A face is an independent set. I(M) is the collection of independent
sets.

I A facet is a basis. B(M) is the collection of bases.



Restrictions of a 1-dimensional matroid
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Geometric representation of matroids

For X ⊆ E define dim(X ) = dim(M|X ). Every subset has a dimension.
If X is independent, then M|X = P[X ] and dim(X ) = #X − 1.
Every matroid has a geometric representation. This involves:

I Dependent points of dimension −1.

I Multiple points of dimension 0.

I Lines of dimension 1.

I Planes of dimension 2.

I Etc.

A set X is dependent if it has:

I 1 or more dependent points.

I 2 or more points in a multiple point class.

I 3 or more points in a line.

I 4 or more points in a plane.

I Etc.



Matroids: 4 point ground set, dim= 2
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Matroids: 4 point ground set, dim= 1
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Matroids: 4 point ground set, dim= 1 (more)
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The 7-point projective plane

7 points, 7 lines in plane
two-dimensional:

(
7
3

)
− 7 = 35− 7 = 28 bases each with 3 points
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The 6-point complete quadrilateral

6 points, 4 lines in plane
two-dimensional:

(
6
3

)
− 4 = 20− 4 = 16 bases each with 3 points
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The 5-point intersecting lines

5 points, 2 lines in plane
two-dimensional:

(
5
3

)
− 2 = 10− 2 = 8 bases each with 3 points
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4 and 3 point restrictions

4 points, 1 line in plane.
Two-dimensional:

(
4
3

)
− 1 = 4− 1 = 3 bases (3 points).
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3 points, 1 line.
One-dimensional:

(
3
2

)
= 3 bases (2 points)
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Independent sets, bases, spanning sets

For each matroid M there are various collections of sets

I X ∈ I(M) is an independent set if X is a subset of a basis.

I X ∈ B(M) is a basis if it is a maximal independent set or a minimal
spanning set.

I X ∈ S(M) is a spanning set if it is a superset of a basis.



Matroid duality

For each matroid on E there is a dual matroid M∗.

I X ∈ I(M) is equivalent to E \ X ∈ S(M∗).

I X ∈ B(M) is equivalent to E \ X ∈ B(M∗).

I X ∈ S(M) is equivalent to E \ X ∈ I(M∗).

For an example, take the matroid M with ground set E = {1, 2, 3, 4}. It
may be characterized by:

I B(M) = {{1, 3}, {2, 3}, {3, 4}}.
χ(M) = −1 + 4− 3 = 0.
The dual matroid has ground set E = {1, 2, 3, 4}.

I B(M∗) = {{2, 4}, {4, 1}, {1, 2}}.
χ(M∗) = −1 + 3− 3 = −1.



Dual matroids
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Resummation and topology

Let M be a matroid. Then there exists a function R : B(M)→ I(M)
with ∑

Y∈I(M)

∏
`∈Y

t` =
∑

X∈B(M)

 ∏
`∈R(X )

t`
∏

`∈X\R(X )

(1 + t`)

 .

Recall the reduced Euler characteristic of M:

χ(M) =
∑

Y∈I(M)

(−1)dim(Y ).

Take all t` = −1. Then

χ(M) = (−1)d#{X ∈ B(M) | R(X ) = X},

It follows that
|χ(M)| ≤ #B(M).

The reduced Euler characteristic is bounded by the number of facets.
For a matroid, the topology is dominated by top dimension.



The uniform matroid Uk ,n

The uniform matroid is M = Uk,n. It has ground set E with #E = n.

I Independent sets: I(Uk,n) = {X | #X ≤ k}
I Basis sets: B(Uk,n) = {X | #X = k}
I Spanning sets: S(Uk,n) = {X | #X ≥ k}
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Euler characteristic of Uk ,n

χ(Uk,n) =
k∑

j=0

(−1)j−1

(
n

j

)
.

|χ(Uk,n)| ≤
(

n

k

)
.

Illustrates: For a matroid, the topology is dominated by top dimension.



Inclusion-exclusion

Take each c` = 0 or 1.
Inclusion-exclusion with three sets:

(1− c1)(1− c2)(1− c3) = 1− c1 − c2 − c3 + c2c3 + c1c3 + c1c2 − c1c2c3
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Inclusion-exclusion with n sets.∏
`∈E

(1− c`) =
∑
Y⊆E

(−1)#Y
∏
`∈Y

c`.



Resummation for spanning sets

There exists a function S : B(M)→ S(M) with

∑
Y∈S(M)

∏
`∈Y

t` =
∑

X∈B(M)

∏
`∈X

t`
∏

`∈S(X )\X

(1 + t`)

 .

A huge sum of products is written as a smaller sum of products.
Rewrite with c` = −t`.

∑
Y∈S(M)

(−1)#Y
∏
`∈Y

c` = (−1)k
∑

X∈B(M)

∏
`∈X

c`

∏
`∈S(X )\X

(1− c`)

 .



The tail for Uk ,n

For each ` ∈ E let c` be 0 or 1. Take t` = −c` in the distributive law.
Then

∑
#Y≥k

(−1)#Y
∏
`∈Y

c` = (−1)k
∑

#X=k

∏
`∈X

c`

∏
`∈S(X )\X

(1− c`)

 .

The right hand side has known sign (−1)k . This is the Bonferonni result
for the tail in the inclusion-exclusion formula. This also gives an estimate
for the tail of an alternating sum.

|
∑

#Y≥k

(−1)#Y
∏
`∈Y

c`| ≤
∑

#X=k

∏
`∈X

c`.



The tail for U2,3
U2,3 has spanning sets {2, 3}, {1, 3}, {1, 3}, {1, 2, 3}.
U2,3 has basis sets {2, 3}, {1, 3}, {1, 3}.

�� HHq qq s s s
Take each c` = 0 or 1.
The tail is a sum over spanning sets; write as sum over basis sets:

c2c3 + c1c3 + c1c2 − c1c2c3 = c2c3 + c1c3 + c1c2(1− c3)

All terms are positive.
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The graphic matroid M(Kn)

Let V be a set with #V = n points (particles).
Let let E be the set of all two-element sets of V , so #E =

(
n
2

)
. The

complete graph Kn has vertex set V and edge set E (Kn) = E .
A simple graph G on vertex set V is specified by its edge set E (G ) ⊆ E .
Define the matroid M = M(Kn) with ground set E and

I X ∈ I(M) iff X = E (G ) for G a forest graph (no cycles) on V .

I X ∈ B(M) iff X = E (G ) for G a tree graph on V .

I X ∈ S(M) iff X = E (G ) for G a connected graph on V .

We have dim(M) = n − 1 and #B(M) = nn−2. Note that

#S(M) ≥ 2(n
2)−(n−1).

If E has n points, the reduced Euler characteristic is

χ(M) = (−1)n−1(n − 1)!.



The graphic matroid M(K4)

The vertex set has #V = 4; the edge set has #E = 6.
An edge in the graph is a point in the matroid.
The number of X ⊆ E with #X = 0, 1, 2, 3, 4, 5, 6 is 1, 6, 15, 20, 15, 6, 1.

I Trees: #B(M) = 42 = 16 (of 20).

I Forests: #I(M) = 1 + 6 + 15 + 16 = 38.

I Connected graphs: #S(M) = 1 + 6 + 15 + 16 = 38.

Each tree has 3 edges; that is, each basis has three points.



Independent sets, spanning sets, bases in M(K4)
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Three-element non-bases in M(K4)
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The graphic matroid M(K5)

The vertex set has #V = 5; the edge set has #E = 10.
An edge in the graph is a point in the matroid.

I Four-edge trees are four-point basis sets.

I The number of independent four-point sets is #B(M) = 53 = 125.

I Geometric description: 3 edge triangles are 3 point lines; 6 edge
complete subgraphs are 6 point planes.

I There are 10 lines and 5 planes.

I A four-point set is dependent if it has 3 collinear points, or 4
non-collinear points in a plane.

I The number of dependent four-point sets is 10 · 7 + 5 · 3 = 85.



Lines and planes in M(K5)
10 of these:
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Four-element non-bases in M(K5)
70 with three of four points on a line:
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15 with four of four points in a plane:
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Geometry of M(K5)
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Penrose tree bound for connected graph sums of M(Kn)

Connected graph sums are used to calculate pressure, density, etc. Here
E = E (Kn) is the set of pairs of particles, ` denotes a pair of particles,
0 ≤ V` ≤ +∞ is their potential energy, β is the inverse temperature,
exp(−βV`) is a Boltzmann factor. A key quantity is

t` = exp(−βV`)− 1.

Thus −1 ≤ t` ≤ 0.

∑
G∈conn[V ]

∏
`∈E(G)

t` =
∑

T∈tree[V ]

 ∏
`∈E(T )

t`
∏

`∈S(E(T ))\E(T )

(1 + t`)

 .

|
∑

G∈conn[V ]

∏
`∈E(G)

t`| ≤
∑

T∈tree[V ]

∏
`∈E(T )

|t`|.

The connected graph sum is bounded by the tree sum.



The fundamental theorem of calculus for a matroid

I William G. Faris, The fundamental theorem of calculus for a
matroid, J. Math. Phys. 53, 063305 (2012).

I A more sophisticated resummation: involves iterated fundamental
theorem of calculus for many variables.

I Generalizes work of Brydges-Kennedy-Abdesselam-Rivasseau.


