2-d NAVIER-STOKES EQUATIONS
WITH VORTICITY PRODUCTION AT THE BOUNDARY
2-d NAVIER-STOKES EQUATIONS
WITH VORTICITY PRODUCTION AT THE BOUNDARY

C. Boldrighini, Dipartimento di Matematica,
Università di Roma ”La Sapienza”

joint work with Paolo Buttà
Università di Roma ”La Sapienza”

VIII International Conference in Mathematical Physics in Armenia:
”Analytic and Probabilistic Methods in Mathematical Physics”
Yerevan, September 2-9, 2012
2-d NAVIER-STOKES EQUATIONS
WITH VORTICITY PRODUCTION AT THE BOUNDARY

C. Boldrighini, Dipartimento di Matematica,
Università di Roma ”La Sapienza”

joint work with Paolo Buttà
Università di Roma ”La Sapienza”

VIII International Conference in Mathematical Physics in Armenia:
”Analytic and Probabilistic Methods in Mathematical Physics”
Yerevan, September 2-9, 2012
1. INTRODUCTION

The classical incompressible Navier-Stokes (NS) equations in a domain $D \subset \mathbb{R}^d$, $d = 2, 3$, in absence of external forces, are

$$\begin{align*}
\partial_t u + u \cdot \nabla u &= \nu \Delta u - \nabla p, \\
\nabla \cdot u &= 0
\end{align*}$$

where $u = u(x, t), x \in D, t \geq 0$, is the velocity field, ν is the viscosity, p the pressure, and $u(0)$ the initial data.

The problem is completed by the no-slip (Dirichlet) boundary conditions $u \mid_{\partial D} = 0$.

The pressure can be eliminated by going over to the vorticity field $\omega(x, t)$, the "curl" or "rotation" of u:

$$\omega(x, t) = \text{curl} u(x, t) = \nabla \times u(x, t).$$
1. INTRODUCTION

The classical incompressible Navier-Stokes (NS) equations in a domain $D \subset \mathbb{R}^d$, $d = 2, 3$, in absence of external forces, are

$$\begin{aligned}
\begin{cases}
\partial_t u + u \cdot \nabla u = \nu \Delta u - \nabla p, \\
\nabla \cdot u = 0, \\
u \big|_{t=0} = u^{(0)}
\end{cases}
\end{aligned}$$

(1)
1. INTRODUCTION

The classical incompressible Navier-Stokes (NS) equations in a domain $D \subset \mathbb{R}^d$, $d = 2, 3$, in absence of external forces, are

\[
\begin{align*}
\partial_t u + u \cdot \nabla u &= \nu \Delta u - \nabla p, \\
\nabla \cdot u &= 0, \\
|_{t=0} u &= u^{(0)}
\end{align*}
\]

(1)

where $u = u(x, t), x \in D, t \geq 0$, is the velocity field, ν is the viscosity, p the pressure, and $u^{(0)}$ the initial data.
1. INTRODUCTION

The classical incompressible Navier-Stokes (NS) equations in a domain $D \subset \mathbb{R}^d$, $d = 2, 3$, in absence of external forces, are

$$
\begin{cases}
\partial_t u + u \cdot \nabla u = \nu \Delta u - \nabla p, \\
\nabla \cdot u = 0, \\
u|_{t=0} = u^{(0)}
\end{cases}
$$

where $u = u(x, t), x \in D, t \geq 0$, is the velocity field, ν is the viscosity, p the pressure, and $u^{(0)}$ the initial data.

The problem is completed by the no-slip (Dirichlet) boundary conditions $u|_{\partial D} = 0$.

The pressure can be eliminated by going over to the vorticity field $\omega(x, t)$, the "curl" or "rotation" of u:

$$
\omega(x, t) = \text{curl} u(x, t) = \nabla \times u(x, t).
$$
1. INTRODUCTION

The classical incompressible Navier-Stokes (NS) equations in a domain $D \subset \mathbb{R}^d$, $d = 2, 3$, in absence of external forces, are

\[
\begin{aligned}
\partial_t u + u \cdot \nabla u &= \nu \Delta u - \nabla p, \\
\nabla \cdot u &= 0, \\
u \nabla \cdot u &= 0, \quad u|_{t=0} = u^{(0)}
\end{aligned}
\]

\[\text{(1)}\]

where $u = u(x, t), x \in D, t \geq 0$, is the velocity field, ν is the viscosity, p the pressure, and $u^{(0)}$ the initial data.

The problem is completed by the no-slip (Dirichlet) boundary conditions $u|_{\partial D} = 0$.

The pressure can be eliminated by going over to the vorticity field $\omega(x, t)$, the ”curl” or ”rotation” of u:

$$
\omega(x, t) = \text{curl } u(x, t) = \nabla \times u(x, t)
$$
1. INTRODUCTION

The classical incompressible Navier-Stokes (NS) equations in a domain $D \subset \mathbb{R}^d$, $d = 2, 3$, in absence of external forces, are

\[\begin{align*}
\partial_t u + u \cdot \nabla u &= \nu \Delta u - \nabla p, \\
\nabla \cdot u &= 0, \\
\nabla \cdot u &= 0,\quad u \big|_{t=0} = u^{(0)}
\end{align*}\]

(1)

where $u = u(x, t), x \in D, t \geq 0$, is the velocity field, ν is the viscosity, p the pressure, and $u^{(0)}$ the initial data.

The problem is completed by the no-slip (Dirichlet) boundary conditions $u \big|_{\partial D} = 0$.

The pressure can be eliminated by going over to the vorticity field $\omega(x, t)$, the "curl" or "rotation" of u:

$$
\omega(x, t) = \text{curl} \ u(x, t) = \nabla \times u(x, t)
$$
Taking the curl of both sides of Eq. (1) the gradient disappears and we get an equation for ω

\[
\partial_t \omega + u \cdot \nabla \omega - \omega \cdot \nabla u = \nu \Delta \omega.
\]
Taking the curl of both sides of Eq. (1) the gradient disappears and we get an equation for ω

$$\partial_t \omega + u \cdot \nabla \omega - \omega \cdot \nabla u = \nu \Delta \omega.$$ \hspace{1cm} (2)
Taking the curl of both sides of Eq. (1) the gradient disappears and we get an equation for ω

$$\partial_t \omega + u \cdot \nabla \omega - \omega \cdot \nabla u = \nu \Delta \omega.$$ \hspace{1cm} (2).

(If $d = 2$, as ω is orthogonal to the plane, $\omega \cdot \nabla u \equiv 0$.)
Taking the curl of both sides of Eq. (1) the gradient disappears and we get an equation for ω

$$\partial_t \omega + u \cdot \nabla \omega - \omega \cdot \nabla u = \nu \Delta \omega. \quad (2)$$

(If $d = 2$, as ω is orthogonal to the plane, $\omega \cdot \nabla u \equiv 0$.)

The velocity u is now a non-local integral functional of ω.

Taking the curl of both sides of Eq. (1) the gradient disappears and we get an equation for ω

$$\partial_t \omega + u \cdot \nabla \omega - \omega \cdot \nabla u = \nu \Delta \omega.$$ \hspace{1cm} (2).

(If $d = 2$, as ω is orthogonal to the plane, $\omega \cdot \nabla u \equiv 0$.)

The velocity u is now a non-local integral functional of ω.

The no-slip condition on u becomes a non-local integral condition on the Laplacian in Eq. (2), which is difficult to handle.
Taking the curl of both sides of Eq. (1) the gradient disappears and we get an equation for ω

$$\partial_t \omega + u \cdot \nabla \omega - \omega \cdot \nabla u = \nu \Delta \omega. \quad (2)$$

(If $d = 2$, as ω is orthogonal to the plane, $\omega \cdot \nabla u \equiv 0$.)

The velocity u is now a non-local integral functional of ω.

The no-slip condition on u becomes a non-local integral condition on the Laplacian in Eq. (2), which is difficult to handle.

Batchelor (1967) argued on physical grounds that one can take the Laplacian in Eq. (2) as the Neumann Laplacian, and restore the no-slip condition by adding a singular vorticity production term at the boundary.
Taking the curl of both sides of Eq. (1) the gradient disappears and we get an equation for ω

$$\partial_t \omega + u \cdot \nabla \omega - \omega \cdot \nabla u = \nu \Delta \omega.$$ \hspace{1cm} (2)

(If $d = 2$, as ω is orthogonal to the plane, $\omega \cdot \nabla u \equiv 0$.)

The velocity u is now a non-local integral functional of ω.

The no-slip condition on u becomes a non-local integral condition on the Laplacian in Eq. (2), which is difficult to handle.

Batchelor (1967) argued on physical grounds that *one can take the Laplacian in Eq. (2) as the Neumann Laplacian, and restore the no-slip condition by adding a singular vorticity production term at the boundary.*

Eq. (2) would be replaced by the formal equation

$$\partial_t \omega + (u \cdot \nabla) \omega = \nu \Delta \omega + f \delta_{\partial D},$$ \hspace{1cm} (3)

where $\delta_{\partial D}$ is a δ-function, and the function f ("vorticity production") on ∂D is determined by the boundary conditions.
Taking the curl of both sides of Eq. (1) the gradient disappears and we get an equation for ω

$$\partial_t \omega + u \cdot \nabla \omega - \omega \cdot \nabla u = \nu \Delta \omega. \quad (2)$$

(If $d = 2$, as ω is orthogonal to the plane, $\omega \cdot \nabla u \equiv 0$.)

The velocity u is now a non-local integral functional of ω.

The no-slip condition on u becomes a non-local integral condition on the Laplacian in Eq. (2), which is difficult to handle.

Batchelor (1967) argued on physical grounds that one can take the Laplacian in Eq. (2) as the Neumann Laplacian, and restore the no-slip condition by adding a singular vorticity production term at the boundary.

Eq. (2) would be replaced by the formal equation

$$\partial_t \omega + (u \cdot \nabla)\omega = \nu \Delta \omega + f \delta_{\partial D}, \quad (3)$$

where $\delta_{\partial D}$ is a δ-function, and the function f ("vorticity production") on ∂D is determined by the boundary conditions.
Chorin proposed in 1973 a recurrent scheme for equation (3) which is particularly convenient in computer simulations.
Chorin proposed in 1973 a recurrent scheme for equation (3) which is particularly convenient in computer simulations.

The explicit control of the vorticity near the boundary could also shed some light on the problem of the convergence of the solutions of the NS equations to solutions of the Euler equations as $\nu \to 0$.

The first (and only) rigorous results are due to Benfatto and Pulvirenti who considered the vorticity production scheme for the half-plane. They proved existence, uniqueness, equivalence to the original NS problem, and convergence of the Chorin iteration method. We consider here the case when the domain D is the flat cylinder $C := T \times [0, \pi]$, the only bounded 2-dimensional region with smooth and flat boundary.
Chorin proposed in 1973 a recurrent scheme for equation (3) which is particularly convenient in computer simulations. The explicit control of the vorticity near the boundary could also shed some light on the problem of the convergence of the solutions of the NS equations to solutions of the Euler equations as $\nu \to 0$.

The first (and only) rigorous results are due to Benfatto and Pulvirenti who considered the vorticity production scheme for the half-plane.
Chorin proposed in 1973 a recurrent scheme for equation (3) which is particularly convenient in computer simulations. The explicit control of the vorticity near the boundary could also shed some light on the problem of the convergence of the solutions of the NS equations to solutions of the Euler equations as $\nu \to 0$.

The first (and only) rigorous results are due to Benfatto and Pulvirenti who considered the vorticity production scheme for the half-plane. They proved existence, uniqueness, equivalence to the original NS problem, and convergence of the Chorin iteration method.
Chorin proposed in 1973 a recurrent scheme for equation (3) which is particularly convenient in computer simulations. The explicit control of the vorticity near the boundary could also shed some light on the problem of the convergence of the solutions of the NS equations to solutions of the Euler equations as $\nu \to 0$.

The first (and only) rigorous results are due to Benfatto and Pulvirenti who considered the vorticity production scheme for the half-plane. They proved existence, uniqueness, equivalence to the original NS problem, and convergence of the Chorin iteration method.

We consider here the case when the domain D is the flat cylinder $C := \mathbb{T}^1 \times [0, \pi]$, the only bounded 2-dimensional region with smooth and flat boundary.
Chorin proposed in 1973 a recurrent scheme for equation (3) which is particularly convenient in computer simulations. The explicit control of the vorticity near the boundary could also shed some light on the problem of the convergence of the solutions of the NS equations to solutions of the Euler equations as $\nu \to 0$.

The first (and only) rigorous results are due to Benfatto and Pulvirenti who considered the vorticity production scheme for the half-plane.

They proved existence, uniqueness, equivalence to the original NS problem, and convergence of the Chorin iteration method.

We consider here the case when the domain D is the flat cylinder $C := \mathbb{T}^1 \times [0, \pi]$, the only bounded 2-dimensional region with smooth and flat boundary.
The outline of our approach is as follows.

By Fourier expansion the problem is reduced to a discrete infinite set of integro-differential equations for the Fourier modes of the vorticity. The boundary conditions determine the vorticity production term as a function of ω. To the system thus defined we can apply elementary methods inspired by the recent work of Dinaburg, Li, Sinai:

Here is a list of references:

The outline of our approach is as follows.
By Fourier expansion the problem is reduced to a discrete infinite set of integro-differential equations for the Fourier modes of the vorticity.

Here is a list of references:
The outline of our approach is as follows.
By Fourier expansion the problem is reduced to a discrete infinite set of integro-differential equations for the Fourier modes of the vorticity.
The boundary conditions determine the vorticity production term as a function of ω.

To the system thus defined we can apply elementary methods inspired by the recent work of Dinaburg, Li, Sinai:

Here is a list of references:
The outline of our approach is as follows.

By Fourier expansion the problem is reduced to a discrete infinite set of integro-differential equations for the Fourier modes of the vorticity.

The boundary conditions determine the vorticity production term as a function of ω.

To the system thus defined we can apply elementary methods inspired by the recent work of Dinaburg, Li, Sinai:
The outline of our approach is as follows.
By Fourier expansion the problem is reduced to a discrete infinite set of integro-differential equations for the Fourier modes of the vorticity.
The boundary conditions determine the vorticity production term as a function of ω.
To the system thus defined we can apply elementary methods inspired by the recent work of Dinaburg, Li, Sinai:

Here is a list of references:

Batchelor G K 2000 *An Introduction to Fluid Dynamics.*
Cambridge University Press.
The outline of our approach is as follows. By Fourier expansion the problem is reduced to a discrete infinite set of integro-differential equations for the Fourier modes of the vorticity. The boundary conditions determine the vorticity production term as a function of ω.

To the system thus defined we can apply elementary methods inspired by the recent work of Dinaburg, Li, Sinai:

Here is a list of references:

The outline of our approach is as follows.
By Fourier expansion the problem is reduced to a discrete infinite set of integro-differential equations for the Fourier modes of the vorticity.
The boundary conditions determine the vorticity production term as a function of ω.
To the system thus defined we can apply elementary methods inspired by the recent work of Dinaburg, Li, Sinai:

Here is a list of references:

Benfatto G and Pulvirenti M
Benfatto G and Pulvirenti M

Benfatto G and Pulvirenti M

Dinaburg E, Li D and Sinai Ya G 2010 *Navier-Stokes system on the flat cylinder and unit square with slip boundary conditions*. Commun. Contemp. Math. 12, 325-349

Dinaburg E, Li D and Sinai Ya G 2010 *Navier-Stokes system on the unit square with no-slip boundary condition*. J. Stat. Phys. 141. 342-358
Benfatto G and Pulvirenti M

Dinaburg E, Li D and Sinai Ya G 2010 *Navier-Stokes system on the flat cylinder and unit square with slip boundary conditions*. Commun. Contemp. Math. 12, 325-349

Dinaburg E, Li D and Sinai Ya G 2010 *Navier-Stokes system on the unit square with no-slip boundary condition*. J. Stat. Phys. 141. 342-358
2. THE NS EQUATIONS ON THE FLAT CYLINDER WITH VORTICITY PRODUCTION

We denote the coordinates on the flat cylinder $C = \mathbb{T} \times [0, \pi]$ as (x_1, x_2), where $x_1 \in \mathbb{T}$ is periodic and $x_2 \in [0, \pi]$.

The boundary is not connected and made of two copies of \mathbb{T}, at $x_2 = 0$ and $x_2 = \pi$.

The equations for the velocity field are

\[
\begin{aligned}
\frac{\partial u}{\partial t} + (u \cdot \nabla)u &= \Delta u - \nabla p, \\
\nabla \cdot u &= 0,
\end{aligned}
\]

with the boundary conditions $u \bigg|_{\partial C} = 0$.

(The viscosity is set equal to 1.)
2. THE NS EQUATIONS ON THE FLAT CYLINDER WITH VORTICITY PRODUCTION

We denote the coordinates on the flat cylinder \(C = \mathbb{T}^1 \times [0, \pi] \) as \((x_1, x_2)\), where \(x_1 \in \mathbb{T}^1 \) is periodic and \(x_2 \in [0, \pi] \).
We denote the coordinates on the flat cylinder \(C = \mathbb{T}^1 \times [0, \pi] \) as \((x_1, x_2)\), where \(x_1 \in \mathbb{T}^1 \) is periodic and \(x_2 \in [0, \pi] \).

The boundary is not connected and made of two copies of \(\mathbb{T}^1 \), at \(x_2 = 0 \) and \(x_2 = \pi \).
We denote the coordinates on the flat cylinder $C = \mathbb{T}^1 \times [0, \pi]$ as (x_1, x_2), where $x_1 \in \mathbb{T}^1$ is periodic and $x_2 \in [0, \pi]$.

The boundary is not connected and made of two copies of \mathbb{T}^1, at $x_2 = 0$ and $x_2 = \pi$.

The equations for the velocity field are

$$\begin{cases}
 \partial_t u + (u \cdot \nabla) u = \Delta u - \nabla p, \\
 \nabla \cdot u = 0, \\
 u|_{t=0} = u^{(0)},
\end{cases}$$
2. THE NS EQUATIONS ON THE FLAT CYLINDER WITH VORTICITY PRODUCTION

We denote the coordinates on the flat cylinder $C = \mathbb{T}^1 \times [0, \pi]$ as (x_1, x_2), where $x_1 \in \mathbb{T}^1$ is periodic and $x_2 \in [0, \pi]$.

The boundary is not connected and made of two copies of \mathbb{T}^1, at $x_2 = 0$ and $x_2 = \pi$.

The equations for the velocity field are

\[
\begin{aligned}
\partial_t u + (u \cdot \nabla) u &= \Delta u - \nabla p, \\
\nabla \cdot u &= 0, \\
|u\rangle_{t=0} &= u^{(0)},
\end{aligned}
\]

with the boundary conditions $u|_{\partial C} = 0$.
2. THE NS EQUATIONS ON THE FLAT CYLINDER WITH VORTICITY PRODUCTION

We denote the coordinates on the flat cylinder $\mathcal{C} = \mathbb{T}^1 \times [0, \pi]$ as (x_1, x_2), where $x_1 \in \mathbb{T}^1$ is periodic and $x_2 \in [0, \pi]$. The boundary is not connected and made of two copies of \mathbb{T}^1, at $x_2 = 0$ and $x_2 = \pi$.

The equations for the velocity field are

$$
\begin{align*}
\partial_t u + (u \cdot \nabla)u &= \Delta u - \nabla p, \\
\nabla \cdot u &= 0, \\
|_{t=0} u &= u^{(0)}, \\
\end{align*}
$$

with the boundary conditions $u|_{\partial\mathcal{C}} = 0$. (The viscosity is set equal to 1.)
2. THE NS EQUATIONS ON THE FLAT CYLINDER WITH VORTICITY PRODUCTION

We denote the coordinates on the flat cylinder $C = \mathbb{T}^1 \times [0, \pi]$ as (x_1, x_2), where $x_1 \in \mathbb{T}^1$ is periodic and $x_2 \in [0, \pi]$.

The boundary is not connected and made of two copies of \mathbb{T}^1, at $x_2 = 0$ and $x_2 = \pi$.

The equations for the velocity field are

$$\begin{cases}
\partial_t u + (u \cdot \nabla) u = \Delta u - \nabla p, \\
\nabla \cdot u = 0, \\
u \big|_{t=0} = u^{(0)},
\end{cases}$$

with the boundary conditions $u \big|_{\partial C} = 0$. (The viscosity is set equal to 1.)
The vorticity takes the form

\[\omega(x, t) := \nabla^\perp \cdot u = \partial_{x_1} u_2 - \partial_{x_2} u_1, \quad \nabla^\perp = (-\partial_{x_2}, \partial_{x_1}). \]
The vorticity takes the form

\[\omega(x, t) := \nabla^\perp \cdot u = \partial_{x_1} u_2 - \partial_{x_2} u_1, \quad \nabla^\perp = (-\partial_{x_2}, \partial_{x_1}). \]

Solenoidality (\(\nabla \cdot u = 0\)) and the boundary conditions imply that the average of the vorticity vanishes

\[\int_C \omega \, dx = 0 \quad (4a) \]
The vorticity takes the form

\[\omega(x, t) := \nabla^\perp \cdot u = \partial_{x_1} u_2 - \partial_{x_2} u_1, \quad \nabla^\perp = (-\partial_{x_2}, \partial_{x_1}). \]

Solenoidality \((\nabla \cdot u = 0)\) and the boundary conditions imply that the average of the vorticity vanishes

\[
\int_C \omega \, dx = 0 \quad (4a)
\]

Therefore if \(\Delta_N\) is the Laplacian with Neumann b.c., \(u\) can be written as

\[
u = \nabla^\perp \Delta_N^{-1} \omega. \quad (4b)\]
The vorticity takes the form

$$\omega(x, t) := \nabla \cdot \perp u = \partial_{x_1} u_2 - \partial_{x_2} u_1, \quad \nabla \perp = (-\partial_{x_2}, \partial_{x_1}).$$

Solenoidality ($\nabla \cdot u = 0$) and the boundary conditions imply that the average of the vorticity vanishes

$$\int_{\mathcal{C}} \omega \, dx = 0 \quad (4a)$$

Therefore if Δ_N is the Laplacian with Neumann b.c., u can be written as

$$u = \nabla \perp \Delta^{-1}_N \omega. \quad (4b)$$

We get the following problem for ω

$$\begin{cases}
\partial_t \omega + u \cdot \nabla \omega = \Delta \omega, \\
\partial_{x_1} \Delta^{-1}_N \omega|_{\partial \mathcal{C}} = 0, \\
\omega|_{t=0} = \nabla \perp \cdot u^{(0)},
\end{cases}$$
The vorticity takes the form
\[
\omega(x, t) := \nabla^\perp \cdot u = \partial_{x_1} u_2 - \partial_{x_2} u_1, \quad \nabla^\perp = (-\partial_{x_2}, \partial_{x_1}).
\]

Solenoidality (\(\nabla \cdot u = 0\)) and the boundary conditions imply that the average of the vorticity vanishes
\[
\int_C \omega \, dx = 0 \quad (4a)
\]

Therefore if \(\Delta_N\) is the Laplacian with Neumann b.c., \(u\) can be written as
\[
u = \nabla^\perp \Delta_N^{-1} \omega. \quad (4b)
\]

We get the following problem for \(\omega\)
\[
\begin{align*}
\partial_t \omega + u \cdot \nabla \omega &= \Delta \omega, \\
\partial_{x_1} \Delta_N^{-1} \omega |_{\partial C} &= 0, \\
\omega |_{t=0} &= \nabla^\perp \cdot u^{(0)},
\end{align*}
\]
If we represent the operator Δ_{N}^{-1} in terms of its kernel, the ”boundary” condition

$$\partial_{x_1} \Delta_{N}^{-1} \omega|_{\partial C} = 0$$

are expressed by a linear integral equation.
If we represent the operator Δ_N^{-1} in terms of its kernel, the "boundary" condition

$$\partial x_1 \Delta_N^{-1} \omega |_{\partial C} = 0$$

are expressed by a linear integral equation.

Passing to the vorticity production scheme, we assume that the Laplacian in the equation for ω is also a Neumann Laplacian,
If we represent the operator Δ^{-1}_N in terms of its kernel, the "boundary" condition

$$\partial_{x_1} \Delta^{-1}_N \omega \big|_{\partial C} = 0$$

are expressed by a linear integral equation.

Passing to the vorticity production scheme, we assume that the Laplacian in the equation for ω is also a Neumann Laplacian, and add a vorticity production term to satisfy the boundary condition.
If we represent the operator Δ_{N}^{-1} in terms of its kernel, the "boundary" condition

$$\partial_{x_1} \Delta_{N}^{-1} \omega|_{\partial C} = 0$$

are expressed by a linear integral equation.

Passing to the vorticity production scheme, we assume that the Laplacian in the equation for ω is also a Neumann Laplacian, and add a vorticity production term to satisfy the boundary condition.

Our NS problem then becomes

$$\begin{cases}
\partial_t \omega + u \cdot \nabla \omega = \Delta_{N} \omega + f \delta_{\partial C}, \\
\partial_{x_1} \Delta_{N}^{-1} \omega|_{\partial C} = 0, \\
\omega|_{t=0} = \nabla \perp \cdot u^{(0)}.
\end{cases} \quad (5)$$

where f takes care of the boundary condition.
If we represent the operator Δ_N^{-1} in terms of its kernel, the "boundary" condition

$$\partial_{x_1} \Delta_N^{-1} \omega |_{\partial C} = 0$$

are expressed by a linear integral equation.

Passing to the vorticity production scheme, we assume that the Laplacian in the equation for ω is also a Neumann Laplacian, and add a vorticity production term to satisfy the boundary condition.

Our NS problem then becomes

$$\left\{ \begin{array}{l}
\partial_t \omega + u \cdot \nabla \omega = \Delta_N \omega + f \delta_{\partial C}, \\
\partial_{x_1} \Delta_N^{-1} \omega |_{\partial C} = 0, \\
\omega |_{t=0} = \nabla \perp \cdot u^{(0)}.
\end{array} \right. \tag{5}$$

where f takes care of the boundary condition.
As the boundary is made of two pieces we have

\[f \delta_{\partial C}(x, t) = f_1(x_1, t)\delta(x_2) + f_2(x_1, t)\delta(x_2 - \pi). \]
As the boundary is made of two pieces we have

\[f \delta_{\partial \mathcal{C}}(x, t) = f_1(x_1, t) \delta(x_2) + f_2(x_1, t) \delta(x_2 - \pi). \]

Absence of external forces and \(\int_{\mathcal{C}} \omega(x, t) \, dx = 0 \) imply

\[\int_{\mathbb{T}^1} dx_1 \, f_j(x_1, t) = 0, \quad j = 1, 2. \]
As the boundary is made of two pieces we have

\[f \delta_{\partial C}(x, t) = f_1(x_1, t)\delta(x_2) + f_2(x_1, t)\delta(x_2 - \pi). \]

Absence of external forces and \(\int_C \omega(x, t)dx = 0 \) imply

\[\int_{T^1} dx_1 \ f_j(x_1, t) = 0, \quad j = 1, 2. \]

We now go through a series of formal steps which lead to an infinite system of integro-differential equations.
As the boundary is made of two pieces we have

\[f \delta_{\partial \mathcal{C}}(x, t) = f_1(x_1, t) \delta(x_2) + f_2(x_1, t) \delta(x_2 - \pi). \]

Absence of external forces and \(\int_{\mathcal{C}} \omega(x, t) dx = 0 \) imply

\[\int_{\mathbb{T}^1} dx_1 f_j(x_1, t) = 0, \quad j = 1, 2. \]

We now go through a series of formal steps which lead to an infinite system of integro-differential equations.

We expand \(\omega(x, t) \) in the Neumann basis \(\{ e^{ik_1 x_1} \cos k_2 x_2 \} \):

\[\omega(x, t) = \sum_{k_1 \neq 0} \omega_{k_1, 0}(t) e^{ik_1 x_1} + 2 \sum_{k_1 \in \mathbb{Z}} \sum_{k_2 \geq 1} \omega_{k_1, k_2}(t) e^{ik_1 x_1} \cos(k_2 x_2), \]
For convenience we extend ω by parity: $\hat{\omega}_{k_1,k_2} = \omega_{k_1,k_2}$, so that

$$\omega(x, t) = \sum_{k \in \mathbb{Z}^2 \atop k \neq 0} \hat{\omega}_{k_1,k_2}(t) e^{i k \cdot x}.$$
For convenience we extend ω by parity: $\hat{\omega}_{k_1,k_2} = \omega_{k_1,|k_2|}$, so that

$$\omega(x, t) = \sum_{k \in \mathbb{Z}^2 \setminus \{0\}} \hat{\omega}_{k_1,k_2}(t) e^{i k \cdot x}. $$

The boundary condition now is

$$\sum_{(0,0) \neq k \in \mathbb{Z}^2} \frac{k_1}{k^2} \hat{\omega}_{k_1,k_2} e^{i k_1 x_1} \cos(k_2 x_2) \bigg|_{\partial C} = 0.$$
For convenience we extend ω by parity: $\hat{\omega}_{k_1,k_2} = \omega_{k_1,|k_2|}$, so that

$$\omega(x,t) = \sum_{k \in \mathbb{Z}^2} \hat{\omega}_{k_1,k_2}(t) e^{ik \cdot x}.$$

The boundary condition now is

$$\sum_{(0,0) \neq k \in \mathbb{Z}^2} k_1 \frac{\hat{\omega}_{k_1,k_2}}{k^2} e^{ik_1 x_1} \cos(k_2 x_2) \bigg|_{\partial C} = 0.$$

It splits into two for the components $x_2 = 0$ and $x_2 = \pi$ of ∂C,
For convenience we extend ω by parity: $\hat{\omega}_{k_1,k_2} = \omega_{k_1,|k_2|}$, so that

$$\omega(x, t) = \sum_{k \in \mathbb{Z}^2} \hat{\omega}_{k_1,k_2}(t) e^{ik \cdot x}.$$

The boundary condition now is

$$\sum_{(0,0) \neq k \in \mathbb{Z}^2} k_1 \frac{\hat{\omega}_{k_1,k_2}}{k^2} e^{i k_1 x_1} \cos(k_2 x_2) \bigg|_{\partial C} = 0.$$

It splits into two for the components $x_2 = 0$ and $x_2 = \pi$ of ∂C, and we get the infinitely many conditions

$$\sum_{k_2,+} \frac{\omega_{k_1,k_2}}{k^2} = 0, \quad \sum_{k_2,-} \frac{\omega_{k_1,k_2}}{k^2} = 0 \quad \forall k_1 \neq 0,$$

(6)
For convenience we extend ω by parity: $\hat{\omega}_{k_1,k_2} = \omega_{k_1,|k_2|}$, so that

$$\omega(x, t) = \sum_{k \in \mathbb{Z}^2, k \neq 0} \hat{\omega}_{k_1,k_2}(t) e^{ik \cdot x}.$$

The boundary condition now is

$$\sum_{(0,0) \neq k \in \mathbb{Z}^2} k_1 \frac{\hat{\omega}_{k_1,k_2}}{k^2} e^{ik_1 x_1} \cos(k_2 x_2) \bigg|_{\partial C} = 0.$$

It splits into two for the components $x_2 = 0$ and $x_2 = \pi$ of ∂C, and we get the infinitely many conditions

$$\sum_{k_2,+} \frac{\omega_{k_1,k_2}}{k^2} = 0, \quad \sum_{k_2,-} \frac{\omega_{k_1,k_2}}{k^2} = 0 \quad \forall k_1 \neq 0, \quad (6)$$

where $\sum_{s,+} a_s = a_0 + 2 \sum_{i \geq 1} a_{2i}$, and $\sum_{s,-} a_s = 2 \sum_{i \geq 1} a_{2i-1}$.
The transport term $u \cdot \nabla \omega$, with $u = \nabla \perp \Delta_N^{-1} \omega$, takes the form
The transport term $u \cdot \nabla \omega$, with $u = \nabla^\perp \Delta_N^{-1} \omega$, takes the form

$$[u \cdot \nabla \omega](x) = 2i \sum_{k_1 \in \mathbb{Z}} \sum_{k_2 \geq 1} R_{k_1, k_2} e^{ik_1 x_1} \sin(k_2 x_2),$$
The transport term $u \cdot \nabla \omega$, with $u = \nabla \perp \Delta^{-1}_N \omega$, takes the form

$$[u \cdot \nabla \omega](x) = 2i \sum_{k_1 \in \mathbb{Z}} \sum_{k_2 \geq 1} R_{k_1, k_2} e^{ik_1 x_1} \sin(k_2 x_2),$$

$$R_{k_1, k_2} = \sum_{\substack{j + \ell = k \\ j \neq (0,0)}} \frac{j \perp \cdot \ell}{j^2} \hat{\omega}_{j_1, j_2} \hat{\omega}_{\ell_1, \ell_2}, \quad j \perp = (-j_2, j_1).$$
The transport term $u \cdot \nabla \omega$, with $u = \nabla^\perp \Delta_N^{-1} \omega$, takes the form

$$[u \cdot \nabla \omega](x) = 2i \sum_{k_1 \in \mathbb{Z}} \sum_{k_2 \geq 1} R_{k_1, k_2} e^{ik_1 x_1} \sin(k_2 x_2),$$

$$R_{k_1, k_2} = \sum_{\substack{j + \ell = k \\ j \neq (0,0)}} j^\perp \cdot \ell \hat{\omega}_{j_1, j_2} \hat{\omega}_{\ell_1, \ell_2}, \quad j^\perp = (-j_2, j_1).$$

The coefficients R_{k_1, k_2} have the same form as the coefficients of the transport term for the 2-d torus \mathbb{T}^2.
The transport term $u \cdot \nabla \omega$, with $u = \nabla \perp \Delta_N^{-1} \omega$, takes the form

$$[u \cdot \nabla \omega](x) = 2i \sum_{k_1 \in \mathbb{Z}} \sum_{k_2 \geq 1} R_{k_1, k_2} e^{i k_1 x_1} \sin(k_2 x_2),$$

$$R_{k_1, k_2} = \sum_{j + \ell = k \atop j \neq (0,0)} \frac{j \perp \cdot \ell}{j^2} \hat{\omega}_{j, j_2} \hat{\omega}_{\ell_1, \ell_2}, \quad j \perp = (-j_2, j_1).$$

The coefficients R_{k_1, k_2} have the same form as the coefficients of the transport term for the 2-d torus \mathbb{T}^2. The coefficients in the Neumann basis are

$$N_{k_1, k_2}[\omega] = i \sum_{h_2 \in \mathbb{Z}} \frac{\delta_{\text{odd}}(h_2 + k_2)}{\pi} \frac{2h_2}{h_2^2 - k_2^2} R_{k_1, h_2}.$$
The transport term $u \cdot \nabla \omega$, with $u = \nabla^\perp \Delta_N^{-1} \omega$, takes the form

$$[u \cdot \nabla \omega](x) = 2i \sum_{k_1 \in \mathbb{Z}} \sum_{k_2 \geq 1} R_{k_1, k_2} e^{ik_1 x_1} \sin(k_2 x_2),$$

$$R_{k_1, k_2} = \sum_{j+\ell=k \atop j \neq (0,0)} \frac{j^\perp \cdot \ell}{j^2} \hat{\omega}_{j_1,j_2} \hat{\omega}_{\ell_1,\ell_2}, \quad j^\perp = (-j_2, j_1).$$

The coefficients R_{k_1, k_2} have the same form as the coefficients of the transport term for the 2-d torus \mathbb{T}^2. The coefficients in the Neumann basis are

$$N_{k_1, k_2}[\omega] = i \sum_{h_2 \in \mathbb{Z}} \frac{\delta_{\text{odd}}(h_2 + k_2)}{\pi} \frac{2h_2}{h_2^2 - k_2^2} R_{k_1, h_2}.$$
We obtain an infinite set of coupled ODE’s (we drop the hat of \(\hat{\omega}_{ij} \)). For all \(k_1 \in \mathbb{Z}, \ k_2 \geq 0 \),

\[
\dot{\omega}_{k_1,k_2}(t) + N_{k_1,k_2}[\omega(t)] = -k^2 \omega_{k_1,k_2}(t) + f_{\pm,k_1}(t), \tag{7}
\]

where \(f_{\pm,k_1}(t) = f_{1,k_1}(t) \pm f_{2,k_1}(t) \), the + [resp. –] sign is chosen for \(k_2 \) even [resp. odd], and

\[
f_{j,k_1}(t) = \frac{1}{2\pi^2} \int_{\mathbb{T}} dx_1 \ f_j(x_1, t) \ e^{ik_1x_1}.
\]
We obtain an infinite set of coupled ODE’s (we drop the hat of $\hat{\omega}_{ij}$). For all $k_1 \in \mathbb{Z}$, $k_2 \geq 0$,

$$\dot{\omega}_{k_1,k_2}(t) + N_{k_1,k_2}[\omega(t)] = -k^2 \omega_{k_1,k_2}(t) + f_{\pm,k_1}(t), \quad (7)$$

where $f_{\pm,k_1}(t) = f_{1,k_1}(t) \pm f_{2,k_1}(t)$, the $+$ [resp. $-$] sign is chosen for k_2 even [resp. odd], and

$$f_{j,k_1}(t) = \frac{1}{2\pi^2} \int_{\mathbb{T}} dx_1 \; f_j(x_1, t) e^{ik_1 x_1}.$$

Equations (7) are completed by the expression for the quadratic term N_{k_1,k_2}, the conditions $\omega_{0,0} = 0$ and $f_{\pm,0} = 0$, and the "boundary" conditions (6).
We obtain an infinite set of coupled ODE’s (we drop the hat of $\hat{\omega}_{ij}$). For all $k_1 \in \mathbb{Z}$, $k_2 \geq 0$,

$$\dot{\omega}_{k_1,k_2}(t) + N_{k_1,k_2}[\omega(t)] = -k^2 \omega_{k_1,k_2}(t) + f_{\pm,k_1}(t), \quad (7)$$

where $f_{\pm,k_1}(t) = f_{1,k_1}(t) \pm f_{2,k_1}(t)$, the $+$ [resp. $-$] sign is chosen for k_2 even [resp. odd], and

$$f_{j,k_1}(t) = \frac{1}{2\pi^2} \int_{\mathbb{T}} dx_1 \ f_j(x_1, t) \ e^{ik_1x_1}.$$

Equations (7) are completed by the expression for the quadratic term N_{k_1,k_2}, the conditions $\omega_{0,0} = 0$ and $f_{\pm,0} = 0$, and the ”boundary” conditions (6).

Observe that if ω satisfies the relations (6) then $N_{0,0}[\omega] = 0$, and, as $f_{+,0}(t) = 0$ and $\omega_{0,0}(0) = 0$, we have $\omega_{0,0}(t) \equiv 0$.
We obtain an infinite set of coupled ODE’s (we drop the hat of $\hat{\omega}_{ij}$). For all $k_1 \in \mathbb{Z}$, $k_2 \geq 0$,

$$\dot{\omega}_{k_1,k_2}(t) + N_{k_1,k_2}[\omega(t)] = -k^2 \omega_{k_1,k_2}(t) + f_{\pm,k_1}(t), \quad (7)$$

where $f_{\pm,k_1}(t) = f_{1,k_1}(t) \pm f_{2,k_1}(t)$, the + [resp. −] sign is chosen for k_2 even [resp. odd], and

$$f_{j,k_1}(t) = \frac{1}{2\pi^2} \int_{\mathbb{T}} dx_1 \ f_j(x_1, t) \ e^{i k_1 x_1}.$$

Equations (7) are completed by the expression for the quadratic term N_{k_1,k_2}, the conditions $\omega_{0,0} = 0$ and $f_{\pm,0} = 0$, and the ”boundary” conditions (6).

Observe that if ω satisfies the relations (6) then $N_{0,0}[\omega] = 0$, and, as $f_{+,0}(t) = 0$ and $\omega_{0,0}(0) = 0$, we have $\omega_{0,0}(t) \equiv 0$.
It is convenient to reformulate Eq.s (7) as an integro-differential equation:
It is convenient to reformulate Eq.s (7) as an integro-differential equation: by Duhamel’s formula we get for \((k_1, k_2) \neq (0, 0),\)

\[
\omega_{k_1, k_2}(t) = e^{-k^2 t} \omega_{k_1, k_2}(0) + \\
+ \int_0^t ds \ e^{-k^2(t-s)} \left\{ f_{\pm, k_1}(s) - N_{k_1, k_2}[\omega(s)] \right\}.
\] (8)
It is convenient to reformulate Eq.s (7) as an integro-differential equation: by Duhamel’s formula we get for \((k_1, k_2) \neq (0, 0)\),

\[
\omega_{k_1,k_2}(t) = e^{-k^2 t} \omega_{k_1,k_2}(0) + \\
+ \int_0^t ds \ e^{-k^2(t-s)} \left\{ f_{\pm,k_1}(s) - N_{k_1,k_2} [\omega(s)] \right\}. \tag{8}
\]

The boundary conditions

\[
\sum_{k_2, +} \frac{\omega_{k_1,k_2}}{k^2} = 0, \quad \sum_{k_2, -} \frac{\omega_{k_1,k_2}}{k^2} = 0 \quad \forall k_1 \neq 0
\]
It is convenient to reformulate Eq.s (7) as an integro-differential equation: by Duhamel’s formula we get for \((k_1, k_2) \neq (0, 0)\),

\[
\omega_{k_1,k_2}(t) = e^{-k^2 t} \omega_{k_1,k_2}(0) + \\
+ \int_0^t ds \ e^{-k^2 (t-s)} \left\{ f_{\pm, k_1}(s) - N_{k_1,k_2}[\omega(s)] \right\}.
\] (8)

The boundary conditions

\[
\sum_{k_2,+} \frac{\omega_{k_1,k_2}}{k^2} = 0, \quad \sum_{k_2,-} \frac{\omega_{k_1,k_2}}{k^2} = 0 \quad \forall k_1 \neq 0
\]

give an infinite set of Volterra integral equations of the 1-st kind

\[
\sum_{k_2,\pm} \frac{1}{k^2} \int_0^t ds \ e^{-k^2 (t-s)} f_{\pm, k_1}(s) = g_{\pm, k_1}[t; \omega]
\] (9)

for the functions \(f_{\pm, k_1}\),
It is convenient to reformulate Eq.s (7) as an integro-differential equation: by Duhamel’s formula we get for \((k_1, k_2) \neq (0, 0),\)

\[
\omega_{k_1,k_2}(t) = e^{-k^2t} \omega_{k_1,k_2}(0) +
\]

\[
+ \int_0^t ds \ e^{-k^2(t-s)} \left\{ f_{\pm,k_1}(s) - N_{k_1,k_2}[\omega(s)] \right\}.
\]

(8)

The boundary conditions

\[
\sum_{k_2, +} \frac{\omega_{k_1,k_2}}{k^2} = 0, \quad \sum_{k_2, -} \frac{\omega_{k_1,k_2}}{k^2} = 0 \quad \forall \ k_1 \neq 0
\]

give an infinite set of Volterra integral equations of the 1-st kind

\[
\sum_{k_2, \pm} \frac{1}{k^2} \int_0^t ds \ e^{-k^2(t-s)} f_{\pm,k_1}(s) = g_{\pm,k_1}[t; \omega]
\]

(9)

for the functions \(f_{\pm,k_1},\) where

\[
g_{\pm,k_1}[t; \omega] = \sum_{k_2, \pm} \frac{1}{k^2} \left\{ -e^{-k^2t} \omega_{k_1,k_2}(0) + \int_0^t ds \ e^{-k^2(t-s)} N_{k_1,k_2}[\omega(s)] \right\}.
\]
It is convenient to reformulate Eq.s (7) as an integro-differential equation: by Duhamel’s formula we get for \((k_1, k_2) \neq (0, 0)\),

\[
\omega_{k_1,k_2}(t) = e^{-k^2 t} \omega_{k_1,k_2}(0) +
\]

\[
+ \int_0^t ds \ e^{-k^2 (t-s)} \left\{ f_{\pm,k_1}(s) - N_{k_1,k_2}[\omega(s)] \right\} .
\] (8)

The boundary conditions

\[
\sum_{k_2,+} \frac{\omega_{k_1,k_2}}{k^2} = 0, \quad \sum_{k_2,-} \frac{\omega_{k_1,k_2}}{k^2} = 0 \quad \forall \ k_1 \neq 0
\]

give an infinite set of Volterra integral equations of the 1-st kind

\[
\sum_{k_2,\pm} \frac{1}{k^2} \int_0^t ds \ e^{-k^2 (t-s)} f_{\pm,k_1}(s) = g_{\pm,k_1}[t; \omega]
\] (9)

for the functions \(f_{\pm,k_1}\), where

\[
g_{\pm,k_1}[t; \omega] = \sum_{k_2,\pm} \frac{1}{k^2} \left\{ -e^{-k^2 t} \omega_{k_1,k_2}(0) + \int_0^t ds \ e^{-k^2 (t-s)} N_{k_1,k_2}[\omega(s)] \right\} .
\]
The following technical lemma shows that the functions f_{\pm,k_1} are uniquely determined in terms of ω.

Lemma 1. The infinite system of Volterra equation of the first kind for $a(t)$,

$$
\sum_{k_2} f_{\pm,k_2} \int_0^t ds e^{-k_2(t-s)} a(s) = b(t), \quad k_1 \neq 0,
$$

where $b(t)$ is a bounded differentiable function with $b(0) = 0$, has a unique solution which can be represented as

$$
a(t) = \int_0^t ds G_{\pm,k_1}(t-s) b'(s) + \int_0^t ds H_{\pm,k_1}(t-s) b(s).
$$

The functions G_{\pm,k_1} and H_{\pm,k_1}, $k_1 \neq 0$ have the following properties:
The following technical lemma shows that the functions f_{\pm,k_1} are uniquely determined in terms of ω. The proof is based on the Laplace transform.

Lemma 1. The infinite system of Volterra equation of the first kind for $a(t) = \sum_{k_2=-k_1}^{k_1} \int_0^t ds \, e^{-k_2(t-s)} a(s) = b(t)$, $k_1 \neq 0$, where $b(t)$ is a bounded differentiable function with $b(0) = 0$, has a unique solution which can be represented as $a(t) = \int_0^t ds \, G_{\pm,k_1}(t-s) b'(s) + \int_0^t ds \, H_{\pm,k_1}(t-s) b(s)$.

The functions G_{\pm,k_1} and H_{\pm,k_1}, $k_1 \neq 0$ have the following properties:
The following technical lemma shows that the functions f_{\pm,k_1} are uniquely determined in terms of ω. The proof is based on the Laplace transform.

Lemma 1. *The infinite system of Volterra equation of the first kind for $a(t)$*
The following technical lemma shows that the functions f_{\pm, k_1} are uniquely determined in terms of ω. The proof is based on the Laplace transform.

Lemma 1. *The infinite system of Volterra equation of the first kind for $a(t)$*

$$
\sum_{k_2, \pm} \frac{1}{k^2} \int_0^t ds \ e^{-k^2(t-s)} \ a(s) = b(t), \quad k_1 \neq 0,
$$

where $b(t)$ is a bounded differentiable function with $b(0) = 0$. The functions $G_{\pm k_1}$ and $H_{\pm k_1}$, $k_1 \neq 0$, have the following properties:
The following technical lemma shows that the functions f_{\pm,k_1} are uniquely determined in terms of ω. The proof is based on the Laplace transform.

Lemma 1. The infinite system of Volterra equation of the first kind for $a(t)$

$$
\sum_{k_2,\pm} \frac{1}{k^2} \int_0^t ds \ e^{-k^2(t-s)} a(s) = b(t), \quad k_1 \neq 0,
$$

where $b(t)$ is a bounded differentiable function with $b(0) = 0$, has a unique solution which can be represented as
The following technical lemma shows that the functions f_{\pm,k_1} are uniquely determined in terms of ω. The proof is based on the Laplace transform.

Lemma 1. *The infinite system of Volterra equation of the first kind for $a(t)$*

\[
\sum_{k_2, \pm} \frac{1}{k^2} \int_0^t ds \ e^{-k^2(t-s)} \ a(s) = b(t), \quad k_1 \neq 0,
\]

where $b(t)$ is a bounded differentiable function with $b(0) = 0$, has a unique solution which can be represented as

\[
a(t) = \int_0^t ds \ G_{k_1}^{\pm}(t - s) \ b'(s) + \int_0^t ds \ H_{k_1}^{\pm}(t - s) \ b(s).
\]
The following technical lemma shows that the functions f_{\pm, k_1} are uniquely determined in terms of ω. The proof is based on the Laplace transform.

Lemma 1. The infinite system of Volterra equation of the first kind for $a(t)$

$$\sum_{k_2, \pm} \frac{1}{k^2} \int_0^t ds \ e^{-k^2(t-s)} \ a(s) = b(t), \quad k_1 \neq 0,$$

where $b(t)$ is a bounded differentiable function with $b(0) = 0$, has a unique solution which can be represented as

$$a(t) = \int_0^t ds \ G_{k_1}^\pm(t-s) \ b'(s) + \int_0^t ds \ H_{k_1}^\pm(t-s) \ b(s).$$

The functions $G_{k_1}^\pm$ and $H_{k_1}^\pm$, $k_1 \neq 0$ have the following properties:
The following technical lemma shows that the functions f_{\pm,k_1} are uniquely determined in terms of ω. The proof is based on the Laplace transform.

Lemma 1. The infinite system of Volterra equation of the first kind for $a(t)$

\[
\sum_{k_2,\pm} \frac{1}{k^2} \int_0^t ds \, e^{-k^2(t-s)} \, a(s) = b(t), \quad k_1 \neq 0,
\]

where $b(t)$ is a bounded differentiable function with $b(0) = 0$, has a unique solution which can be represented as

\[
a(t) = \int_0^t ds \, G_{k_1}^{\pm}(t-s) \, b'(s) + \int_0^t ds \, H_{k_1}^{\pm}(t-s) \, b(s).
\]

The functions $G_{k_1}^{\pm}$ and $H_{k_1}^{\pm}$, $k_1 \neq 0$ have the following properties:
\[G_{k_1}^\pm(t) := \frac{2}{\pi} d_{\pm}(k_1) \left[\delta(t) + \frac{e^{-k_1^2t}}{\sqrt{t}} \sum_{n=1}^{4} \frac{d_{\pm}(k_1)^n}{\Gamma(n/2)} t^{(n-1)/2} \right], \]

\[d_{\pm}(k_1) := k_1 \left[\tanh \left(\frac{\pi}{2} k_1 \right) \right]^{\pm1}, \]
\[G_{k_1}^{\pm}(t) := \frac{2}{\pi} d_{\pm}(k_1) \left[\delta(t) + \frac{e^{-k_1^2 t}}{\sqrt{t}} \sum_{n=1}^{4} \frac{d_{\pm}(k_1)^n}{\Gamma(n/2)} t^{(n-1)/2} \right], \]

\[d_{\pm}(k_1) := k_1 \left[\tanh \left(\frac{\pi}{2} k_1 \right) \right]^{\pm1}, \]

where \(\Gamma \) is the Euler Gamma-function,
\[G_{k_1}^\pm(t) := \frac{2}{\pi} d_{\pm}(k_1) \left[\delta(t) + \frac{e^{-k_1^2 t}}{\sqrt{t}} \sum_{n=1}^{4} \frac{d_{\pm}(k_1)^n}{\Gamma(n/2)} t^{(n-1)/2} \right], \]

\[d_{\pm}(k_1) := k_1 \left[\tanh \left(\frac{\pi}{2} k_1 \right) \right]^{\pm 1}, \]

where \(\Gamma \) is the Euler Gamma-function, and the functions \(H_{k_1}^\pm(t) \) are continuous and such that, for each \(0 < \gamma < 1 \) the inequalities

\[H_{k_1}^\pm(t) \leq B_\gamma |k_1|^3 \exp \left[-(1 - \gamma) k_1^2 t \right], \]

hold, with \(B_\gamma \) a positive constant.
\[G_{k_1}^\pm(t) := \frac{2}{\pi} d_\pm(k_1) \left[\delta(t) + \frac{e^{-k_1^2 t}}{\sqrt{t}} \sum_{n=1}^{4} \frac{d_\pm(k_1)^n}{\Gamma(n/2)} t^{(n-1)/2} \right], \]

\[d_\pm(k_1) := k_1 \left[\tanh \left(\frac{\pi}{2} k_1 \right) \right]^{\pm1}, \]

where \(\Gamma \) is the Euler Gamma-function, and the functions \(H_{k_1}^\pm(t) \) are continuous and such that, for each \(0 < \gamma < 1 \) the inequalities

\[H_{k_1}^\pm(t) \leq B_\gamma |k_1|^3 \exp \left[- (1 - \gamma) k_1^2 t \right], \]

hold, with \(B_\gamma \) a positive constant.

From now on our starting point is the problem (8) where the functions \(f_{\pm, k_1} \) are expressed in terms of \(\omega \) in the form stated in Lemma 1.
\[G_{k_1}^{\pm}(t) := \frac{2}{\pi} d_{\pm}(k_1) \left[\delta(t) + \frac{e^{-k_1^2 t}}{\sqrt{t}} \sum_{n=1}^{4} \frac{d_{\pm}(k_1)^n}{\Gamma(n/2)} t^{(n-1)/2} \right], \]

\[d_{\pm}(k_1) := k_1 \left[\tanh \left(\frac{\pi}{2} k_1 \right) \right]^{\pm 1}, \]

where \(\Gamma \) is the Euler Gamma-function, and the functions \(H_{k_1}^{\pm}(t) \) are continuous and such that, for each \(0 < \gamma < 1 \) the inequalities

\[H_{k_1}^{\pm}(t) \leq B_\gamma |k_1|^3 \exp \left[-(1 - \gamma) k_1^2 t \right], \]

hold, with \(B_\gamma \) a positive constant.

From now on our starting point is the problem (8) where the functions \(f_{\pm,k_1} \) are expressed in terms of \(\omega \) in the form stated in Lemma 1.
3. LOCAL EXISTENCE AND REGULARIZATION

By rather elementary estimates we prove local (in time) existence, in a suitable class of functions, with regularization in the periodic variable for $t > 0$.

Theorem 2. Let $\omega_{k_1, k_2}(0)$ satisfy for all $k_1 \in \mathbb{Z}$, $k_2 \geq 0$, $k \neq (0, 0)$, and for some $1 < \alpha < 2$, $\beta \geq 0$, and $D_0 > 0$, the inequalities

$$|\omega_{k_1, k_2}(0)| \leq D_0 |k|^{-\alpha} (1 + |k_1|^{-\beta}).$$

Then there exist a time $T_0 = T_0(D_0, \alpha, \beta)$ and a constant $D_2 = D_2(D_0, \alpha, \beta)$ such that there is a unique solution of the problem (6), (8) for $t \in [0, T_0]$ which satisfies the inequalities

$$|\omega_{k_1, k_2}(t)| \leq D_2 e^{-\frac{1}{4} |k|^{-\alpha} (1 + |k_1|^{-\beta})} \forall k_1 \in \mathbb{Z}, k_2 \geq 0, k \neq (0, 0).$$
3. LOCAL EXISTENCE AND REGULARIZATION

By rather elementary estimates we prove local (in time) existence, in a suitable class of functions, with regularization in the periodic variable for \(t > 0 \), .

Theorem 2. Let \(\omega_{k_1, k_2}(0) \) satisfy for all \(k_1 \in \mathbb{Z}, k_2 \geq 0, k \neq (0, 0) \), and for some \(1 < \alpha < 2, \beta \geq 0, \) and \(D_0 > 0 \), the inequalities

\[
|\omega_{k_1, k_2}(0)| \leq D_0 |k|^{\alpha}(1 + |k_1|^{\beta}).
\]

Then there exist a time \(T_0 = T_0(D_0, \alpha, \beta) \) and a constant \(D_2 = D_2(D_0, \alpha, \beta) \) such that there is a unique solution of the problem (6), (8) for \(t \in [0, T_0] \), which satisfies the inequalities

\[
|\omega_{k_1, k_2}(t)| \leq D_2 e^{-(1 + |k_1|)t/4} |k|^{\alpha}(1 + |k_1|^{\beta}) \quad \forall k_1 \in \mathbb{Z}, k_2 \geq 0, k \neq (0, 0).
\]
3. LOCAL EXISTENCE AND REGULARIZATION

By rather elementary estimates we prove local (in time) existence, in a suitable class of functions, with regularization in the periodic variable for $t > 0$.

Theorem 2. Let $\omega_{k_1,k_2}(0)$ satisfy for all $k_1 \in \mathbb{Z}$, $k_2 \geq 0$, $k \neq (0,0)$, and for some $1 < \alpha < 2$, $\beta \geq 0$, and $D_0 > 0$, the inequalities

$$|\omega_{k_1,k_2}(0)| \leq \frac{D_0}{|k|^\alpha(1 + |k_1|^\beta)}.$$
3. LOCAL EXISTENCE AND REGULARIZATION

By rather elementary estimates we prove local (in time) existence, in a suitable class of functions, with regularization in the periodic variable for $t > 0$.

Theorem 2. Let $\omega_{k_1,k_2}(0)$ satisfy for all $k_1 \in \mathbb{Z}$, $k_2 \geq 0$, $k \neq (0,0)$, and for some $1 < \alpha < 2$, $\beta \geq 0$, and $D_0 > 0$, the inequalities

$$|\omega_{k_1,k_2}(0)| \leq \frac{D_0}{|k|^\alpha (1 + |k_1|^\beta)}.$$

Then there exist a time $T_0 = T_0(D_0, \alpha, \beta)$ and a constant $D_2 = D_2(D_0, \alpha, \beta)$ such that there is a unique solution of the problem (6), (8) for $t \in [0, T_0]$, which satisfies the inequalities

$$|\omega_{k_1,k_2}(t)| \leq \frac{D_2 e^{-(1+|k_1|)t/4}}{|k|^\alpha (1 + |k_1|^\beta)} \quad \forall k_1 \in \mathbb{Z}, \ k_2 \geq 0, \ k \neq (0,0).$$
By rather elementary estimates we prove local (in time) existence, in a suitable class of functions, with regularization in the periodic variable for $t > 0$, .

Theorem 2. Let $\omega_{k_1,k_2}(0)$ satisfy for all $k_1 \in \mathbb{Z}$, $k_2 \geq 0$, $k \neq (0,0)$, and for some $1 < \alpha < 2$, $\beta \geq 0$, and $D_0 > 0$, the inequalities

$$|\omega_{k_1,k_2}(0)| \leq \frac{D_0}{|k|^\alpha(1 + |k_1|^\beta)}.$$

Then there exist a time $T_0 = T_0(D_0, \alpha, \beta)$ and a constant $D_2 = D_2(D_0, \alpha, \beta)$ such that there is a unique solution of the problem (6), (8) for $t \in [0, T_0]$, which satisfies the inequalities

$$|\omega_{k_1,k_2}(t)| \leq \frac{D_2 e^{-(1+|k_1|)t/4}}{|k|^\alpha(1 + |k_1|^\beta)} \quad \forall k_1 \in \mathbb{Z}, \ k_2 \geq 0, \ k \neq (0,0).$$
Moreover, if D_0 is sufficiently small, the solution is global and the estimate above is valid for any $t \geq 0$.

Sketch of the proof.

The proof is based on an iteration scheme with a contraction argument in the Banach space $\Omega_{\alpha,\beta,T}$, the space of the functions $\{\omega_{k_1}, k_2(s) : (k_1, k_2) \neq (0, 0), s \in [0, T]\}$ with norm $\|\omega\|_{\alpha,\beta,T}:= \sup_{s \in [0, T]} \sup_{k_1, k_2} |\omega_{k_1, k_2}(s)| e^{(1+ |k_1|)s/4} |k|^{\alpha} (1 + |k_1|^{\beta})$.

Some properties of the terms of the equation (8) are needed.

We first consider the transport term.

Lemma 3. There is a constant $C_N > 0$ such that, for any $\omega, \tilde{\omega} \in \Omega_{\alpha,\beta,T}$ satisfying Eq.s (7) $|N_{k_1, k_2}[\omega(t)] - N_{k_1, k_2}[\tilde{\omega}(t)]| \leq C_N e^{-(1+ |k_1|)t/4} R(\omega, \tilde{\omega}) \|\omega - \tilde{\omega}\|_{\alpha,\beta,T}$

$R(\omega, \tilde{\omega}) := \max \{\|\omega\|_{\alpha,\beta,T}; \|\tilde{\omega}\|_{\alpha,\beta,T}\}$.

Moreover, if D_0 is sufficiently small, the solution is global and the estimate above is valid for any $t \geq 0$.

Sketch of the proof.
Moreover, if D_0 is sufficiently small, the solution is global and the estimate above is valid for any $t \geq 0$.

Sketch of the proof. The proof is based on an iteration scheme with a contraction argument in the Banach space $\Omega_{\alpha,\beta,T}$, the space of the functions $\{\omega_{k_1,k_2}(s) : (k_1, k_2 \neq (0,0), s \in [0, T]\}$ with norm
Moreover, if D_0 is sufficiently small, the solution is global and the estimate above is valid for any $t \geq 0$.

Sketch of the proof. The proof is based on an iteration scheme with a contraction argument in the Banach space $\Omega_{\alpha,\beta,T}$, the space of the functions $\{\omega_{k_1,k_2}(s) : (k_1, k_2 \neq (0,0), s \in [0, T]\}$ with norm

$$
\|\omega\|_{\alpha,\beta,T} := \sup_{s \in [0,T]} \sup_{k_1,k_2} |\omega_{k_1,k_2}(s)| e^{(1+|k_1|)s/4} |k|^\alpha \left(1 + |k_1|^\beta\right).
$$

Some properties of the terms of the equation (8) are needed. We first consider the transport term.

Lemma 3. There is a constant $C_N > 0$ such that, for any $\omega, \tilde{\omega} \in \Omega_{\alpha,\beta,T}$ satisfying Eq.s (7)

$$
|N_{k_1,k_2}[\omega(t)] - N_{k_1,k_2}[\tilde{\omega}(t)]| \leq C_N e^{-\left(1+|k_1|\right)t/4} \frac{1}{1+|k_1|^\beta} R(\omega,\tilde{\omega}) \|\omega - \tilde{\omega}\|_{\alpha,\beta,T},
$$

where

$$
R(\omega,\tilde{\omega}) := \max\{\|\omega\|_{\alpha,\beta,T}; \|\tilde{\omega}\|_{\alpha,\beta,T}\}.
$$
Moreover, if D_0 is sufficiently small, the solution is global and the estimate above is valid for any $t \geq 0$.

Sketch of the proof. The proof is based on an iteration scheme with a contraction argument in the Banach space $\Omega_{\alpha, \beta, T}$, the space of the functions $\{\omega_{k_1,k_2}(s) : (k_1, k_2 \neq (0,0), s \in [0, T]\}$ with norm

$$\|\omega\|_{\alpha, \beta, T} := \sup_{s \in [0, T]} \sup_{k_1,k_2} |\omega_{k_1,k_2}(s)| e^{(1+|k_1|s/4} |k|^\alpha \left(1 + |k_1|^\beta\right).$$

Some properties of the terms of the equation (8) are needed. We first consider the transport term.
Moreover, if D_0 is sufficiently small, the solution is global and the estimate above is valid for any $t \geq 0$.

Sketch of the proof. The proof is based on an iteration scheme with a contraction argument in the Banach space $\Omega_{\alpha,\beta,T}$, the space of the functions $\{\omega_{k_1,k_2}(s) : (k_1, k_2 \neq (0,0), s \in [0, T]\}$ with norm

$$\|\omega\|_{\alpha,\beta,T} := \sup_{s \in [0,T]} \sup_{k_1,k_2} |\omega_{k_1,k_2}(s)| e^{(1+|k_1|s/4} |k|^{\alpha} \left(1 + |k_1|^{\beta}\right).$$

Some properties of the terms of the equation (8) are needed. We first consider the transport term.

Lemma 3. There is a constant $C_N > 0$ such that, for any $\omega, \tilde{\omega} \in \Omega_{\alpha,\beta,T}$ satisfying Eq.s (7)
Moreover, if D_0 is sufficiently small, the solution is global and the estimate above is valid for any $t \geq 0$.

Sketch of the proof. The proof is based on an iteration scheme with a contraction argument in the Banach space $\Omega_{\alpha, \beta, T}$, the space of the functions $\{\omega_{k_1, k_2}(s) : (k_1, k_2 \neq (0, 0), s \in [0, T]\}$ with norm

$$\|\omega\|_{\alpha, \beta, T} := \sup_{s \in [0, T]} \sup_{k_1, k_2} |\omega_{k_1, k_2}(s)| e^{(1+|k_1|)s/4} |k|\alpha \left(1 + |k_1|\beta\right).$$

Some properties of the terms of the equation (8) are needed. We first consider the transport term.

Lemma 3. There is a constant $C_N > 0$ such that, for any $\omega, \tilde{\omega} \in \Omega_{\alpha, \beta, T}$ satisfying Eq.s (7)

$$|N_{k_1, k_2}[\omega(t)] - N_{k_1, k_2}[\tilde{\omega}(t)]| \leq \frac{C_N e^{-(1+|k_1|)t/4}}{1 + |k_1|\beta} R(\omega, \tilde{\omega}) \|\omega - \tilde{\omega}\|_{\alpha, \beta, T},$$
Moreover, if D_0 is sufficiently small, the solution is global and the estimate above is valid for any $t \geq 0$.

Sketch of the proof. The proof is based on an iteration scheme with a contraction argument in the Banach space $\Omega_{\alpha,\beta,T}$, the space of the functions $\{\omega_{k_1,k_2}(s) : (k_1, k_2 \neq (0,0), s \in [0, T])\}$ with norm

$$
\|\omega\|_{\alpha,\beta,T} := \sup_{s \in [0,T]} \sup_{k_1,k_2} |\omega_{k_1,k_2}(s)| e^{(1+|k_1|)s/4} |k|^\alpha \left(1 + |k_1|^\beta\right).
$$

Some properties of the terms of the equation (8) are needed. We first consider the transport term.

Lemma 3. There is a constant $C_N > 0$ such that, for any $\omega, \tilde{\omega} \in \Omega_{\alpha,\beta,T}$ satisfying Eq.s (7)

$$
|N_{k_1,k_2}[\omega(t)] - N_{k_1,k_2}[\tilde{\omega}(t)]| \leq \frac{C_N e^{-(1+|k_1|)t/4}}{1 + |k_1|^\beta} R(\omega,\tilde{\omega}) \|\omega - \tilde{\omega}\|_{\alpha,\beta,T},
$$

$$
R(\omega,\tilde{\omega}) := \max \{\|\omega\|_{\alpha,\beta,T}; \|\tilde{\omega}\|_{\alpha,\beta,T}\}.
$$
Moreover, if D_0 is sufficiently small, the solution is global and the estimate above is valid for any $t \geq 0$.

Sketch of the proof. The proof is based on an iteration scheme with a contraction argument in the Banach space $\Omega_{\alpha,\beta,T}$, the space of the functions $\{\omega_{k_1,k_2}(s) : (k_1, k_2 \neq (0,0), s \in [0,T])\}$ with norm

$$\|\omega\|_{\alpha,\beta,T} := \sup_{s \in [0,T]} \sup_{k_1,k_2} |\omega_{k_1,k_2}(s)| e^{(1+|k_1|)s/4} |k|^\alpha \left(1 + |k_1|^\beta\right).$$

Some properties of the terms of the equation (8) are needed. We first consider the transport term.

Lemma 3. There is a constant $C_N > 0$ such that, for any $\omega, \tilde{\omega} \in \Omega_{\alpha,\beta,T}$ satisfying Eq.s (7)

$$|N_{k_1,k_2}[\omega(t)] - N_{k_1,k_2}[\tilde{\omega}(t)]| \leq \frac{C_N e^{-(1+|k_1|)t/4}}{1 + |k_1|^{\beta}} R(\omega, \tilde{\omega}) \|\omega - \tilde{\omega}\|_{\alpha,\beta,T},$$

$$R(\omega, \tilde{\omega}) := \max \{\|\omega\|_{\alpha,\beta,T}; \|\tilde{\omega}\|_{\alpha,\beta,T}\}.$$
An analogous result is needed for the vorticity production term.
An analogous result is needed for the vorticity production term.

Lemma 4. There is a constant $C_f > 0$ such that if $\omega, \tilde{\omega} \in \Omega_{\alpha,\beta,T}$ satisfy Eq. (8) and $f_{\pm,k_1}(t), \tilde{f}_{\pm,k_1}(t)$ are the solutions, for ω and $\tilde{\omega}$, respectively, of the equations
An analogous result is needed for the vorticity production term.

Lemma 4. There is a constant $C_f > 0$ such that if $\omega, \tilde{\omega} \in \Omega_{\alpha,\beta,T}$ satisfy Eq. (8) and $f_{\pm,k_1}(t), \tilde{f}_{\pm,k_1}(t)$ are the solutions, for ω and $\tilde{\omega}$, respectively, of the equations

$$
\sum_{k_2,\pm} \frac{1}{k^2} \int_0^t ds \ e^{-k^2(t-s)} f_{\pm,k_1}(s) = g_{\pm,k_1}[t;\omega],
$$

(9)
An analogous result is needed for the vorticity production term.

Lemma 4. There is a constant $C_f > 0$ such that if $\omega, \tilde{\omega} \in \Omega_{\alpha, \beta, T}$ satisfy Eq. (8) and $f_{\pm, k_1}(t), \tilde{f}_{\pm, k_1}(t)$ are the solutions, for ω and $\tilde{\omega}$, respectively, of the equations

$$
\sum_{k_2,\pm} \frac{1}{k^2} \int_0^t ds \ e^{-k^2(t-s)} f_{\pm, k_1}(s) = g_{\pm, k_1}[t; \omega], \quad (9)
$$

$$
g_{\pm, k_1}[t; \omega] = \sum_{k_2,\pm} \frac{1}{k^2} \left\{ -e^{-k^2 t} \omega_{k_1, k_2}(0) + \int_0^t ds \ e^{-k^2(t-s)} N_{k_1, k_2}[\omega(s)] \right\},
$$
An analogous result is needed for the vorticity production term.

Lemma 4. There is a constant $C_f > 0$ such that if $\omega, \tilde{\omega} \in \Omega_{\alpha,\beta,T}$ satisfy Eq. (8) and $f_{\pm,k_1}(t), \tilde{f}_{\pm,k_1}(t)$ are the solutions, for ω and $\tilde{\omega}$, respectively, of the equations

$$
\sum_{k_2,\pm} \frac{1}{k^2} \int_0^t ds \, e^{-k^2(t-s)} \, f_{\pm,k_1}(s) = g_{\pm,k_1}[t;\omega],
$$

then the following inequalities hold

$$
g_{\pm,k_1}[t;\omega] = \sum_{k_2,\pm} \frac{1}{k^2} \left\{ -e^{-k^2 t} \omega_{k_1,k_2}(0) + \int_0^t ds \, e^{-k^2(t-s)} \, N_{k_1,k_2}[\omega(s)] \right\},
$$
An analogous result is needed for the vorticity production term.

Lemma 4. There is a constant $C_f > 0$ such that if $\omega, \tilde{\omega} \in \Omega_{\alpha, \beta, T}$ satisfy Eq. (8) and $f_{\pm, k_1}(t), \tilde{f}_{\pm, k_1}(t)$ are the solutions, for ω and $\tilde{\omega}$, respectively, of the equations

$$
\sum_{k_2, \pm} \frac{1}{k^2} \int_0^t ds \ e^{-k^2(t-s)} f_{\pm, k_1}(s) = g_{\pm, k_1}[t; \omega], \quad (9)
$$

$$
g_{\pm, k_1}[t; \omega] = \sum_{k_2, \pm} \frac{1}{k^2} \left\{ -e^{-k^2 t} \omega_{k_1, k_2}(0) + \int_0^t ds \ e^{-k^2(t-s)} N_{k_1, k_2}[\omega(s)] \right\},
$$

then the following inequalities hold

$$
\left| f_{\pm, k_1}(t) - \tilde{f}_{\pm, k_1}(t) \right| \leq \frac{C_* \ e^{-(1+|k_1|)t/4}}{1 + |k_1|^{\beta}} M_{k_1}(\omega, \tilde{\omega})
$$
An analogous result is needed for the vorticity production term.

Lemma 4. There is a constant $C_f > 0$ such that if $\omega, \tilde{\omega} \in \Omega_{\alpha,\beta,T}$ satisfy Eq. (8) and $f_{\pm,k_1}(t), \tilde{f}_{\pm,k_1}(t)$ are the solutions, for ω and $\tilde{\omega}$, respectively, of the equations

$$
\sum_{k_2,\pm} \frac{1}{k^2} \int_0^t ds \, e^{-k^2(t-s)} \, f_{\pm,k_1}(s) = g_{\pm,k_1}[t; \omega],
$$

(9)

Then the following inequalities hold

$$
|f_{\pm,k_1}(t) - \tilde{f}_{\pm,k_1}(t)| \leq C_* \frac{e^{-(1+|k_1|)t/4}}{1 + |k_1|^{\beta}} M_{k_1}(\omega, \tilde{\omega})
$$

where if $\delta \omega := \omega - \tilde{\omega}$ and $R(\omega, \tilde{\omega})$ is as above,

$$
M_{k_1}(\omega, \tilde{\omega}) = |k_1|^{2-\alpha} \|\delta \omega\|_{\alpha,\beta,0} + R(\omega, \tilde{\omega}) \|\delta \omega\|_{\alpha,\beta,T}.
$$
An analogous result is needed for the vorticity production term.

Lemma 4. There is a constant $C_f > 0$ such that if $\omega, \tilde{\omega} \in \Omega_{\alpha, \beta, T}$ satisfy Eq. (8) and $f_{\pm, k_1}(t), \tilde{f}_{\pm, k_1}(t)$ are the solutions, for ω and $\tilde{\omega}$, respectively, of the equations

$$
\sum_{k_2, \pm} \frac{1}{k^2} \int_0^t ds \ e^{-k^2(t-s)} \ f_{\pm, k_1}(s) = g_{\pm, k_1}[t; \omega],
$$

$$g_{\pm, k_1}[t; \omega] = \sum_{k_2, \pm} \frac{1}{k^2} \left\{ -e^{-k^2 t} \omega_{k_1, k_2}(0) + \int_0^t ds \ e^{-k^2(t-s)} N_{k_1, k_2}[\omega(s)] \right\},
$$

then the following inequalities hold

$$
\left| f_{\pm, k_1}(t) - \tilde{f}_{\pm, k_1}(t) \right| \leq \frac{C_* \ e^{-(1+|k_1|)t/4 \ 1 + |k_1|^\beta}}{M_{k_1}(\omega, \tilde{\omega})}
$$

where if $\delta \omega := \omega - \tilde{\omega}$ and $R(\omega, \tilde{\omega})$ is as above,

$$M_{k_1}(\omega, \tilde{\omega}) = |k_1|^{2-\alpha} \| \delta \omega \|_{\alpha, \beta, 0} + R(\omega, \tilde{\omega}) \| \delta \omega \|_{\alpha, \beta, T}.$$
The proof of Lemmas 3 and 4 is obtained by elementary, albeit somewhat involved, estimates for inverse power series.
The proof of Lemmas 3 and 4 is obtained by elementary, albeit somewhat involved, estimates for inverse power series.

Observe that taking $\tilde{\omega} = 0$, the estimates of Lemma 4 give

$$|N_{k_1,k_2}[\omega(t)]| \leq \frac{C_N e^{-(1+|k_1|)t/4}}{1 + |k_1|^{\beta}} \|\omega\|^2_{\alpha,\beta,T},$$

where

$$N_{k_1,k_2}[\omega(t)] := e^{-k_2 t} \omega_{k_1,k_2}(0),$$

and

$$f_{\pm,k_1}(t) := -\sum_{k_2,\pm} k_2 e^{-k_2 t} \omega_{k_1,k_2}(0),$$

is the solution of the Volterra equation

$$\sum_{k_2,\pm} k_2 \int_0^t ds e^{-k_2 (t-s)} f_{\pm,k_1}(s) = g_{\pm,k_1}(t).$$
The proof of Lemmas 3 and 4 is obtained by elementary, albeit somewhat involved, estimates for inverse power series. Observe that taking $\tilde{\omega} = 0$, the estimates of Lemma 4 give

$$|N_{k_1, k_2}[\omega(t)]| \leq \frac{C_N e^{-(1+|k_1|)t/4}}{1 + |k_1|^\beta} \|\omega\|_{\alpha, \beta, T}^2,$$

$$|f_{\pm, k_1}(t)| \leq \frac{C_* e^{-(1+|k_1|)t/4}}{1 + |k_1|^\beta} \left(|k_1|^{2-\alpha} \|\omega\|_{\alpha, \beta, 0} + \|\omega\|_{\alpha, \beta, T}^2 \right).$$
The proof of Lemmas 3 and 4 is obtained by elementary, albeit somewhat involved, estimates for inverse power series. Observe that taking $\tilde{\omega} = 0$, the estimates of Lemma 4 give

$$|N_{k_1,k_2}[\omega(t)]| \leq \frac{C_N e^{-(1+|k_1|)t/4}}{1 + |k_1|^\beta} \|\omega\|^2_{\alpha,\beta,T},$$

$$|f_{\pm,k_1}(t)| \leq \frac{C_* e^{-(1+|k_1|)t/4}}{1 + |k_1|^\beta} \left(|k_1|^{2-\alpha} \|\omega\|_{\alpha,\beta,0} + \|\omega\|^2_{\alpha,\beta,T}\right).$$

The starting point in the iteration procedure is

$$\omega_{k_1,k_2}^{(0)}(t) := e^{-k_2 t} \omega_{k_1,k_2}(0), \quad g_{\pm,k_1}^{(0)}(t) := - \sum_{k_2,\pm} \frac{1}{k^2} e^{-k^2 t} \omega_{k_1,k_2}(0),$$
The proof of Lemmas 3 and 4 is obtained by elementary, albeit somewhat involved, estimates for inverse power series.

Observe that taking $\tilde{\omega} = 0$, the estimates of Lemma 4 give

$$|N_{k_1,k_2}[\omega(t)]| \leq \frac{C_N e^{-(1+|k_1|)t/4}}{1 + |k_1|^\beta} \|\omega\|_{\alpha,\beta,T}^2,$$

$$|f_{\pm,k_1}(t)| \leq \frac{C_* e^{-(1+|k_1|)t/4}}{1 + |k_1|^\beta} \left(|k_1|^{2-\alpha} \|\omega\|_{\alpha,\beta,0} + \|\omega\|_{\alpha,\beta,T}^2\right).$$

The starting point in the iteration procedure is

$$\omega_{k_1,k_2}^{(0)}(t) := e^{-k_1^2 t} \omega_{k_1,k_2}(0), \quad g_{\pm,k_1}^{(0)}(t) := -\sum_{k_2,\pm} \frac{1}{k_2^2} e^{-k_2^2 t} \omega_{k_1,k_2}(0),$$

and $f_{\pm,k_1}^{(0)}(t)$ is the solution of the Volterra equation

$$\sum_{k_2,\pm} \frac{1}{k_2^2} \int_0^t ds e^{-k_2^2(t-s)} f_{\pm,k_1}(s) = g_{\pm,k_1}^{(0)}(t).$$
The proof of Lemmas 3 and 4 is obtained by elementary, albeit somewhat involved, estimates for inverse power series.

Observe that taking $\tilde{\omega} = 0$, the estimates of Lemma 4 give

$$|N_{k_1,k_2}[\omega(t)]| \leq \frac{C_N e^{-(1+|k_1|)t/4}}{1 + |k_1|^\beta} \|\omega\|_{\alpha,\beta,T}^2,$$

$$|f_{\pm,k_1}(t)| \leq \frac{C_* e^{-(1+|k_1|)t/4}}{1 + |k_1|^\beta} \left(|k_1|^{2-\alpha} \|\omega\|_{\alpha,\beta,0} + \|\omega\|_{\alpha,\beta,T}^2 \right).$$

The starting point in the iteration procedure is

$$\omega_{k_1,k_2}^{(0)}(t) := e^{-k^2 t} \omega_{k_1,k_2}(0), \quad g_{\pm,k_1}^{(0)}(t) := -\sum_{k_2,\pm} e^{-k^2 t} \omega_{k_1,k_2}(0),$$

and $f_{\pm,k_1}^{(0)}(t)$ is the solution of the Volterra equation

$$\sum_{k_2,\pm} \frac{1}{k^2} \int_0^t ds e^{-k^2(t-s)} f_{\pm,k_1}(s) = g_{\pm,k_1}^{(0)}(t).$$
We then iterate by setting, for each integer $n \geq 1$,

$$
\omega(n) \left(k_1, k_2 \right) := e^{-k_2 t} \omega(k_1, k_2)(0) + \int_0^t ds e^{-k_2 (t-s)} f(n-1)_{\pm, k_1}(s) - N(n-1)_{k_1, k_2}(0),
$$

where $N(n)_{k_1, k_2}(t) := N(k_1, k_2)[\omega(n-1)(t)]$ and $f(n)_{\pm, k_1}(t)$ is the solution of

$$
\sum_{k_2, \pm 1} k_2 \int_0^t ds e^{-k_2 (t-s)} f(n)_{\pm, k_1}(s) = g(n)_{\pm, k_1}(t),
$$

with $g(n)_{\pm, k_1}(t) := g(\pm, k_1)[t; \omega(n-1)]$.
We then iterate by setting, for each integer $n \geq 1$,

$$\omega_{k_1,k_2}(n)(t) := e^{-k^2 t} \omega_{k_1,k_2}(0) + \int_0^t ds e^{-k^2 (t-s)} \left[f_{\pm,k_1}^{(n-1)}(s) - N_{k_1,k_2}^{(n-1)}(s) \right].$$
We then iterate by setting, for each integer $n \geq 1$,

$$
\omega_{k_1,k_2}^{(n)}(t) := e^{-k^2 t} \omega_{k_1,k_2}(0) + \int_0^t ds \ e^{-k^2(t-s)} \left[f_{\pm,k_1}^{(n-1)}(s) - N_{k_1,k_2}^{(n-1)}(s) \right],
$$

where $N_{k_1,k_2}^{(n)}(t) := N_{k_1,k_2}[\omega^{(n-1)}(t)]$ and $f_{\pm,k_1}^{(n)}(t)$ is the solution of
We then iterate by setting, for each integer $n \geq 1$,

$$\omega_{k_1, k_2}^{(n)}(t) := e^{-k^2 t} \omega_{k_1, k_2}(0) + \int_0^t ds \ e^{-k^2(t-s)} \left[f_{\pm, k_1}^{(n-1)}(s) - N_{k_1, k_2}^{(n-1)}(s) \right],$$

where $N_{k_1, k_2}^{(n)}(t) := N_{k_1, k_2}[\omega^{(n-1)}(t)]$ and $f_{\pm, k_1}^{(n)}(t)$ is the solution of

$$\sum_{k_2, \pm} \frac{1}{k^2} \int_0^t ds \ e^{-k^2(t-s)} f_{\pm, k_1}^{(n)}(s) = g_{\pm, k_1}^{(n)}(t),$$
We then iterate by setting, for each integer $n \geq 1$,

$$\omega_{k_1,k_2}^{(n)}(t) := e^{-k^2 t} \omega_{k_1,k_2}(0) + \int_0^t ds \ e^{-k^2(t-s)} \left[f_{\pm,k_1}^{(n-1)}(s) - N_{k_1,k_2}^{(n-1)}(s) \right],$$

where $N_{k_1,k_2}^{(n)}(t) := N_{k_1,k_2}[\omega^{(n-1)}(t)]$ and $f_{\pm,k_1}^{(n)}(t)$ is the solution of

$$\sum_{k_2,\pm} \frac{1}{k^2} \int_0^t ds \ e^{-k^2(t-s)} f_{\pm,k_1}^{(n)}(s) = g_{\pm,k_1}^{(n)}(t),$$

with $g_{\pm,k_1}^{(n)}(t) := g_{\pm,k_1}[t; \omega^{(n-1)}]$
We then iterate by setting, for each integer \(n \geq 1 \),

\[
\omega_{k_1,k_2}^{(n)}(t) := e^{-k^2 t} \omega_{k_1,k_2}(0) + \int_0^t ds \ e^{-k^2 (t-s)} \left[f_{\pm,k_1}^{(n-1)}(s) - N_{k_1,k_2}^{(n-1)}(s) \right],
\]

where \(N_{k_1,k_2}^{(n)}(t) := N_{k_1,k_2}[\omega^{(n-1)}(t)] \) and \(f_{\pm,k_1}^{(n)}(t) \) is the solution of

\[
\sum_{k_2,\pm} \frac{1}{k^2} \int_0^t ds \ e^{-k^2 (t-s)} f_{\pm,k_1}^{(n)}(s) = g_{\pm,k_1}^{(n)}(t),
\]

with \(g_{\pm,k_1}^{(n)}(t) := g_{\pm,k_1}[t;\omega^{(n-1)}] \) and, as stated before,

\[
g_{\pm,k_1}[t;\omega] = \sum_{k_2,\pm} \frac{1}{k^2} \left\{-e^{-k^2 t} \omega_{k_1,k_2}(0) + \int_0^t ds \ e^{-k^2 (t-s)} N_{k_1,k_2}[\omega(s)]\right\}.
\]
We then iterate by setting, for each integer $n \geq 1$,

$$
\omega_{k_1,k_2}^{(n)}(t) := e^{-k^2 t} \omega_{k_1,k_2}(0) + \int_0^t ds \ e^{-k^2(t-s)} \left[f_{\pm,k_1}^{(n-1)}(s) - N_{k_1,k_2}^{(n-1)}(s) \right],
$$

where $N_{k_1,k_2}^{(n)}(t) := N_{k_1,k_2}[\omega^{(n-1)}(t)]$ and $f_{\pm,k_1}^{(n)}(t)$ is the solution of

$$
\sum_{k_2,\pm} \frac{1}{k^2} \int_0^t ds \ e^{-k^2(t-s)} f_{\pm,k_1}^{(n)}(s) = g_{\pm,k_1}^{(n)}(t),
$$

with $g_{\pm,k_1}^{(n)}(t) := g_{\pm,k_1}[t; \omega^{(n-1)}]$ and, as stated before,

$$
g_{\pm,k_1}[t; \omega] = \sum_{k_2,\pm} \frac{1}{k^2} \left\{ -e^{-k^2 t} \omega_{k_1,k_2}(0) + \int_0^t ds \ e^{-k^2(t-s)} N_{k_1,k_2}[\omega(s)] \right\}. \quad \text{(10.2)}
$$
The theorem easily follows from the following lemma.

Lemma 5. Under the assumptions above, for all \(n \geq 1 \):

i) There is some \(T_1 = T_1(D_0, \alpha, \beta) > 0 \) such that
\[
\| \omega(n) \|_{\alpha, \beta, T} \leq \frac{1}{2} \| \omega(n) \|_{\alpha, \beta, T} - \| \omega(n-1) \|_{\alpha, \beta, T},
\]

ii) There is some \(T_0 = T_0(D_0, \alpha, \beta), 0 < T_0 \leq T_1 \), such that
\[
\| \omega(n+1) - \omega(n) \|_{\alpha, \beta, T} < \frac{1}{2} \| \omega(n) \|_{\alpha, \beta, T},
\]

The proof is obtained on an induction procedure based on elementary inequalities.

We give a sketch for assertion i)
The theorem easily follows from the following lemma.

Lemma 5. *Under the assumptions above, for all* \(n \geq 1 \):

i) There is some \(T_1 = T_1(D_0, \alpha, \beta) > 0 \) such that

\[
\| \omega(n) \|_{\alpha, \beta, T} \leq D_2 := 2(1 + 2C_f)D_0,
\]

\(0 \leq T \leq T_1 \), \(C_f \) being the constant occurring in the inequalities for the vorticity production term in Lemma 3.

ii) There is some \(T_0 = T_0(D_0, \alpha, \beta) \), \(0 < T_0 \leq T_1 \), such that

\[
\| \omega(n+1) - \omega(n) \|_{\alpha, \beta, T} < \frac{1}{2} \| \omega(n) - \omega(n-1) \|_{\alpha, \beta, T},
\]

\(0 \leq T \leq T_0 \).

The proof is obtained on an induction procedure based on elementary inequalities.

We give a sketch for assertion i)
The theorem easily follows from the following lemma.

Lemma 5. *Under the assumptions above, for all \(n \geq 1 \):

1) There is some \(T_1 = T_1(D_0, \alpha, \beta) > 0 \) such that

\[
\| \omega(n) \|_{\alpha, \beta, T} \leq D_2 := 2(1 + 2C_f)D_0, \quad 0 \leq T \leq T_1,
\]

\(C_f \) being the constant occurring in the inequalities for the vorticity production term in Lemma 3.
The theorem easily follows from the following lemma.

Lemma 5. Under the assumptions above, for all \(n \geq 1 \):

i) There is some \(T_1 = T_1(D_0, \alpha, \beta) > 0 \) such that

\[
\left\| \omega^{(n)} \right\|_{\alpha, \beta, T} \leq D_2 := 2(1 + 2C_f)D_0, \quad 0 \leq T \leq T_1,
\]

\(C_f \) being the constant occurring in the inequalities for the vorticity production term in Lemma 3.

ii) There is some \(T_0 = T_0(D_0, \alpha, \beta), 0 < T_0 \leq T_1 \), such that

\[
\left\| \omega^{(n+1)} - \omega^{(n)} \right\|_{\alpha, \beta, T} < \frac{1}{2} \left\| \omega^{(n)} - \omega^{(n-1)} \right\|_{\alpha, \beta, T}, \quad 0 \leq T \leq T_0.
\]
The theorem easily follows from the following lemma.

Lemma 5. Under the assumptions above, for all \(n \geq 1 \):

i) There is some \(T_1 = T_1(D_0, \alpha, \beta) > 0 \) such that

\[
\left\| \omega^{(n)} \right\|_{\alpha, \beta, T} \leq D_2 := 2(1 + 2C_f)D_0, \quad 0 \leq T \leq T_1,
\]

\(C_f \) being the constant occurring in the inequalities for the vorticity production term in Lemma 3.

ii) There is some \(T_0 = T_0(D_0, \alpha, \beta), 0 < T_0 \leq T_1 \), such that

\[
\left\| \omega^{(n+1)} - \omega^{(n)} \right\|_{\alpha, \beta, T} < \frac{1}{2} \left\| \omega^{(n)} - \omega^{(n-1)} \right\|_{\alpha, \beta, T}, \quad 0 \leq T \leq T_0.
\]

The proof is obtained on an induction procedure based on elementary inequalities.
The theorem easily follows from the following lemma.

Lemma 5. *Under the assumptions above, for all* \(n \geq 1 \):

i) *There is some* \(T_1 = T_1(D_0, \alpha, \beta) > 0 \)* *such that*

\[
\| \omega^{(n)} \|_{\alpha, \beta, T} \leq D_2 := 2(1 + 2C_f)D_0, \quad 0 \leq T \leq T_1,
\]

\(C_f \) *being the constant occurring in the inequalities for the vorticity production term in Lemma 3.*

ii) *There is some* \(T_0 = T_0(D_0, \alpha, \beta) \), \(0 < T_0 \leq T_1 \), *such that*

\[
\| \omega^{(n+1)} - \omega^{(n)} \|_{\alpha, \beta, T} < \frac{1}{2} \| \omega^{(n)} - \omega^{(n-1)} \|_{\alpha, \beta, T}, \quad 0 \leq T \leq T_0.
\]

The proof is obtained on an induction procedure based on elementary inequalities. We give a sketch for assertion i)
For $n = 0$ we have $\| \omega^{(0)} \|_{\alpha, \beta, T} \leq D_0 < D_2$.
For $n = 0$ we have $\|\omega^{(0)}\|_{\alpha, \beta, T} \leq D_0 < D_2$. Proceed by induction and assume that assertion i) holds for any $0 \leq n' < n$ up to some time T_1. As $\omega_{k_1, k_2}^{(n-1)}(0) = \omega_{k_1, k_2}(0)$ for all $n \geq 1$, we have,

$$
\|\omega^{(n-1)}\|_{\alpha, \beta, 0} \leq D_0, \quad \|\omega^{(n-1)}\|_{\alpha, \beta, T} \leq D_2.
$$
For \(n = 0 \) we have \(\| \omega^{(0)} \|_{\alpha, \beta, T} \leq D_0 < D_2 \). Proceed by induction and assume that assertion i) holds for any \(0 \leq n' < n \) up to some time \(T_1 \). As \(\omega^{(n-1)}_{k_1, k_2}(0) = \omega_{k_1, k_2}(0) \) for all \(n \geq 1 \), we have,

\[
\| \omega^{(n-1)} \|_{\alpha, \beta, 0} \leq D_0, \quad \| \omega^{(n-1)} \|_{\alpha, \beta, T} \leq D_2.
\]

Furthermore we have,

\[
\left| \omega^{(n)}_{k_1, k_2}(t) \right| \leq \frac{D_0 e^{-k^2 t}}{|k|\alpha (1 + |k_1|\beta)} + \\
\int_0^t ds \ e^{-k^2(t-s)} \left[|f^{(n-1)}_{\pm, k_1}(s)| + |N^{(n-1)}_{k_1, k_2}(s)| \right].
\]
For \(n = 0 \) we have \(\|\omega^{(0)}\|_{\alpha, \beta, T} \leq D_0 < D_2 \). Proceed by induction and assume that assertion i) holds for any \(0 \leq n' < n \) up to some time \(T_1 \). As \(\omega^{(n-1)}(0) = \omega_{k_1, k_2}(0) \) for all \(n \geq 1 \), we have,

\[
\|\omega^{(n-1)}\|_{\alpha, \beta, 0} \leq D_0, \quad \|\omega^{(n-1)}\|_{\alpha, \beta, T} \leq D_2.
\]

Furthermore we have,

\[
\left| \omega^{(n)}_{k_1, k_2}(t) \right| \leq \frac{D_0 e^{-k^2 t}}{|k|^{\alpha} (1 + |k_1|^{\beta})} + \\
+ \int_0^t ds \ e^{-k^2 (t-s)} \left[\left| f^{(n-1)}_{\pm, k_1}(s) \right| + \left| N^{(n-1)}_{k_1, k_2}(s) \right| \right].
\]

By applying the inequalities of the previous lemmas we get

\[
\left| \omega^{(n)}_{k_1, k_2}(t) \right| \leq \frac{e^{-(1+|k_1|t)/4}}{|k|^{\alpha} (1 + |k_1|^{\beta})} \left[D_0 + 2 \frac{1 - e^{-k^2 t/2}}{|k|^{2-\alpha}} \times \left(C_f D_0 |k_1|^{2-\alpha} + C_f D_2^2 + C_N D_2^2 \right) \right]
\]
For $n = 0$ we have $\|w^{(0)}\|_{\alpha, \beta, T} \leq D_0 < D_2$. Proceed by induction and assume that assertion i) holds for any $0 \leq n' < n$ up to some time T_1. As $\omega_{k_1, k_2}^{(n-1)}(0) = \omega_{k_1, k_2}(0)$ for all $n \geq 1$, we have,

$$\left\|\omega^{(n-1)}\right\|_{\alpha, \beta, 0} \leq D_0, \quad \left\|\omega^{(n-1)}\right\|_{\alpha, \beta, T} \leq D_2.$$

Furthermore we have,

$$\left|\omega^{(n)}_{k_1, k_2}(t)\right| \leq \frac{D_0 e^{-k^2 t}}{|k|^\alpha (1 + |k_1|^\beta)} +$$

$$+ \int_0^t ds \ e^{-k^2 (t-s)} \left[\left| f^{(n-1)}_{\pm, k_1}(s) \right| + \left| N^{(n-1)}_{k_1, k_2}(s) \right| \right].$$

By applying the inequalities of the previous lemmas we get

$$\left|\omega^{(n)}_{k_1, k_2}(t)\right| \leq \frac{e^{- (1 + |k_1| t)/4}}{|k|^\alpha (1 + |k_1|^\beta)} \left[D_0 + 2 \frac{1 - e^{-k^2 t/2}}{|k|^{2-\alpha}} \right]$$

$$\times \left(C_f D_0 |k_1|^{2-\alpha} + C_f D_2^2 + C_N D_2^2 \right)$$
As on the right we have D_2^2, and D_2 is proportional to D_0, we see that if D_0 is small enough, the term in square brackets is less than D_2 for all times, and we have a global solution.
As on the right we have D_2^2, and D_2 is proportional to D_0, we see that if D_0 is small enough, the term in square brackets is less than D_2 for all times, and we have a global solution. Otherwise we have

$$
|\omega_{k_1,k_2}^{(n)}(t)| \leq \frac{e^{-(1+|k_1|t)/4}}{|k|^\alpha (1 + |k_1|^\beta)} \left[\frac{D_2}{2} + \bar{C} D_2^2 t^{(2-\alpha)/2} \right],
$$

with

$$
\bar{C} := 2 (C_f + C_N) \sup_{\xi > 0} \frac{1 - e^{-\xi/2}}{\xi^{(2-\alpha)/2}}.
$$
As on the right we have D_2^2, and D_2 is proportional to D_0, we see that if D_0 is small enough, the term in square brackets is less than D_2 for all times, and we have a global solution. Otherwise we have

$$\left| \omega^{(n)}_{k_1, k_2}(t) \right| \leq \frac{e^{-(1+|k_1| t)/4}}{|k|^\alpha (1 + |k_1|^{\beta})} \left[\frac{D_2}{2} + \bar{C} D_2^2 t^{(2-\alpha)/2} \right],$$

with

$$\bar{C} := 2 \left(C_f + C_N \right) \sup_{\xi > 0} \frac{1 - e^{-\xi/2}}{\xi^{(2-\alpha)/2}}.$$

and we have $\|\omega^{(n)}\|_{\alpha, \beta, T} \leq D_2$ if

$$T \leq T_1 := \left(\frac{1}{2 \bar{C} D_2} \right)^{2/(2-\alpha)}.$$

Hence assertion i) is proved with this choice of T_1.
As on the right we have \(D_2^2 \), and \(D_2 \) is proportional to \(D_0 \), we see that if \(D_0 \) is small enough, the term in square brackets is less than \(D_2 \) for all times, and we have a global solution.

Otherwise we have

\[
\left| \omega_{k_1,k_2}^{(n)}(t) \right| \leq \frac{e^{-(1+|k_1|t)/4}}{|k|^{\alpha}(1+|k_1|^{\beta})} \left[\frac{D_2}{2} + \bar{C} D_2^2 t^{(2-\alpha)/2} \right],
\]

with

\[
\bar{C} := 2 (C_f + C_N) \sup_{\xi > 0} \frac{1 - e^{-\xi/2}}{\xi^{(2-\alpha)/2}}.
\]

and we have \(\|\omega^{(n)}\|_{\alpha,\beta,T} \leq D_2 \) if

\[
T \leq T_1 := \left(\frac{1}{2\bar{C}D_2} \right)^{2/(2-\alpha)}.
\]

Hence assertion i) is proved with this choice of \(T_1 \).
Assertion ii) is proved in a similar way.

The proof of Theorem 2 is now easy. In fact, by Lemma 5, \{\omega(n)\} is a uniformly bounded Cauchy sequence in \(\Omega_{\alpha,\beta,T}\) for \(0 < T < T_0\). This proves existence and uniqueness of the solution in \(\Omega_{\alpha,\beta,T}\) for \(0 < T < T_0\). ■

For what follows we need the following simple remark.

Remark. If we omit the decay factor \(e^{-(1+|k_1|)t/4}\) and take \(\beta = 0\) the proof of Theorem 2 goes through with minor changes.

If we assume that the initial data satisfy the boundary conditions and \(|\omega_{k_1,k_2}(0)| \leq D_0 |k|^{\alpha}\) \(\forall k_1 \in \mathbb{Z}, k_2 \geq 0, k \neq (0,0)\), with \(1 < \alpha < 2\), then there exist a time \(T_0 = T_0(D_0,\alpha)\) and a unique solution \(\{\omega_{k_1,k_2}(t)\}; k_1 \in \mathbb{Z}, k_2 \geq 0\) of equations (8) such that \(\|\omega\|_{\alpha,T_0} < \infty\), where \(\|\omega\|_{\alpha,t} := \sup_{s \in [0,t]} \sup_{k_1 \in \mathbb{Z}} \sup_{k_2 \geq 0} |\omega_{k_1,k_2}(s)|^{\alpha}\).
Assertion ii) is proved in a similar way. The proof of Theorem 2 is now easy.
Assertion ii) is proved in a similar way.

The proof of Theorem 2 is now easy.

In fact, by Lemma 5, \(\{\omega^{(n)}\} \) is a uniformly bounded Cauchy sequence in \(\Omega_{\alpha,\beta,T} \) for \(0 < T < T_0 \). This proves existence and uniqueness of the solution in \(\Omega_{\alpha,\beta,T} \) for \(0 < T < T_0 \). ■
Assertion ii) is proved in a similar way.
The proof of Theorem 2 is now easy.
In fact, by Lemma 5, \{\omega^{(n)}\} is a uniformly bounded Cauchy sequence in \(\Omega_{\alpha,\beta,T}\) for \(0 < T < T_0\). This proves existence and uniqueness of the solution in \(\Omega_{\alpha,\beta,T}\) for \(0 < T < T_0\). ■
For what follows we need the following simple remark.
Assertion ii) is proved in a similar way.

The proof of Theorem 2 is now easy.

In fact, by Lemma 5, \(\{ \omega^{(n)} \} \) is a uniformly bounded Cauchy sequence in \(\Omega_{\alpha,\beta,T} \) for \(0 < T < T_0 \). This proves existence and uniqueness of the solution in \(\Omega_{\alpha,\beta,T} \) for \(0 < T < T_0 \).

For what follows we need the following simple remark.

Remark. If we omit the decay factor \(e^{-\left(1+|k_1|\right)t/4} \) and take \(\beta = 0 \) the proof of Theorem 2 goes through with minor changes.
Assertion ii) is proved in a similar way.

The proof of Theorem 2 is now easy.

In fact, by Lemma 5, \(\{\omega^{(n)}\} \) is a uniformly bounded Cauchy sequence in \(\Omega_{\alpha,\beta,T} \) for \(0 < T < T_0 \). This proves existence and uniqueness of the solution in \(\Omega_{\alpha,\beta,T} \) for \(0 < T < T_0 \).

For what follows we need the following simple remark.

Remark. If we omit the decay factor \(e^{-(1+|k_1|)t/4} \) and take \(\beta = 0 \) the proof of Theorem 2 goes through with minor changes. If we assume that the initial data satisfy the boundary conditions and

\[
|\omega_{k_1,k_2}(0)| \leq \frac{D_0}{|k|^{\alpha}} \quad \forall \; k_1 \in \mathbb{Z}, \; k_2 \geq 0, \; k \neq (0,0),
\]

with \(1 < \alpha < 2 \), then there exist a time \(T_0 = T_0(D_0, \alpha) \) and a unique solution \(\{\omega_{k_1,k_2}(t); \; k_1 \in \mathbb{Z}, \; k_2 \geq 0\} \) of equations (8) such that \(\|\omega\|_{\alpha,T_0} < \infty \), where

\[
\|\omega\|_{\alpha,T} := \sup_{s \in [0,t]} \sup_{k_1 \in \mathbb{Z}} \sup_{k_2 \geq 0} |\omega_{k_1,k_2}(s)| \; |k|^{\alpha}.
\]
Assertion ii) is proved in a similar way.

The proof of Theorem 2 is now easy.

In fact, by Lemma 5, \(\{\omega^{(n)}\} \) is a uniformly bounded Cauchy sequence in \(\Omega_{\alpha,\beta, T} \) for \(0 < T < T_0 \). This proves existence and uniqueness of the solution in \(\Omega_{\alpha,\beta, T} \) for \(0 < T < T_0 \). ■

For what follows we need the following simple remark.

Remark. If we omit the decay factor \(e^{-(1+|k_1|)t/4} \) and take \(\beta = 0 \) the proof of Theorem 2 goes through with minor changes. If we assume that the initial data satisfy the boundary conditions and

\[
|\omega_{k_1,k_2}(0)| \leq \frac{D_0}{|k|^{\alpha}} \quad \forall k_1 \in \mathbb{Z}, \ k_2 \geq 0, \ k \neq (0,0),
\]

with \(1 < \alpha < 2 \), then there exist a time \(T_0 = T_0(D_0, \alpha) \) and a unique solution \(\{\omega_{k_1,k_2}(t); \ k_1 \in \mathbb{Z}, \ k_2 \geq 0\} \) of equations (8) such that \(\|\omega\|_{\alpha, T_0} < \infty \), where

\[
\|\omega\|_{\alpha, t} := \sup_{s \in [0,t]} \sup_{k_1 \in \mathbb{Z}} \sup_{k_2 \geq 0} |\omega_{k_1,k_2}(s)| |k|^{\alpha}.
\]
We can now see that the local solutions just obtained are weak solutions of the original NS problem.
We can now see that the local solutions just obtained are weak solutions of the original NS problem.

Lemma 6. Let \(\{\omega_{k_1,k_2}(t); k_1 \in \mathbb{Z}, k_2 \geq 0\}, \ t \in [0, T], \) be a solution of equations (8) such that \(\|\omega\|_{\alpha,T} < \infty, \ 1 < \alpha < 2, \) and

\[
\omega(x, t) := \sum_{k \in \mathbb{Z}^2} \hat{\omega}_{k_1,k_2}(t) e^{ik \cdot x}.
\]
We can now see that the local solutions just obtained are weak solutions of the original NS problem.

Lemma 6. Let \(\{\omega_{k_1,k_2}(t); k_1 \in \mathbb{Z}, k_2 \geq 0\}, t \in [0, T], \) be a solution of equations (8) such that \(\|\omega\|_{\alpha, T} < \infty, 1 < \alpha < 2, \) and

\[
\omega(x, t) := \sum_{k \in \mathbb{Z}^2} \hat{\omega}_{k_1,k_2}(t) e^{i k \cdot x}.
\]

Then, the velocity field \(u(x, t) := \nabla^\perp \Delta_N^{-1} \omega(x, t) \) coincides, for \(t \in [0, T], \) with a weak solution to the NS system with Dirichlet boundary conditions.
We can now see that the local solutions just obtained are weak solutions of the original NS problem.

Lemma 6. Let \(\{ \omega_{k_1,k_2}(t); k_1 \in \mathbb{Z}, k_2 \geq 0 \}, t \in [0, T], \) be a solution of equations (8) such that \(\| \omega \|_{\alpha, T} < \infty, 1 < \alpha < 2, \) and

\[
\omega(x, t) := \sum_{k \in \mathbb{Z}^2} \hat{\omega}_{k_1,k_2}(t) e^{i k \cdot x}.
\]

Then, the velocity field \(u(x, t) := \nabla^\perp \Delta_{N}^{-1} \omega(x, t) \) coincides, for \(t \in [0, T], \) with a weak solution to the NS system with Dirichlet boundary conditions.

Proof. We have

\[
u(x, t) = \sum_{k \in \mathbb{Z}^2} u_{k_1,k_2}(t) e^{i k \cdot x}, \quad u_{k_1,k_2}(t) := -ik^\perp \frac{\hat{\omega}_{k_1,k_2}(t)}{k^2},
\]
We can now see that the local solutions just obtained are weak solutions of the original NS problem.

Lemma 6. Let \(\{\omega_{k_1,k_2}(t); \, k_1 \in \mathbb{Z}, \, k_2 \geq 0\} \), \(t \in [0, T] \), be a solution of equations (8) such that \(\|\omega\|_{\alpha, T} < \infty \), \(1 < \alpha < 2 \), and

\[
\omega(x, t) := \sum_{k \in \mathbb{Z}^2} \hat{\omega}_{k_1,k_2}(t) e^{ik \cdot x}.
\]

Then, the velocity field \(u(x, t) := \nabla^\perp \Delta_N^{-1} \omega(x, t) \) coincides, for \(t \in [0, T] \), with a weak solution to the NS system with Dirichlet boundary conditions.

Proof. We have

\[
u(x, t) = \sum_{k \in \mathbb{Z}^2} u_{k_1,k_2}(t) e^{ik \cdot x}, \quad u_{k_1,k_2}(t) := -ik^\perp \frac{\hat{\omega}_{k_1,k_2}(t)}{k^2},\]
So that we have the estimate
So that we have the estimate

\[\sup_{t \in [0, T]} |u_{k_1, k_2}(t)| \leq \|\omega\|_{\alpha, T} \frac{1}{k^{\alpha+1}}. \]
So that we have the estimate

$$\sup_{t \in [0, T]} |u_{k_1,k_2}(t)| \leq \|\omega\|_{\alpha,T} \frac{1}{|k|^\alpha+1}.$$

Hence $u \in L^2([0, T]; V)$, where V is the space of solenoidal vector fields in $H^1_0(\mathcal{C})^2$.
So that we have the estimate

\[
\sup_{t \in [0, T]} |u_{k_1, k_2}(t)| \leq \|\omega\|_{\alpha, T} \frac{1}{k^{\alpha+1}}.
\]

Hence \(u \in L^2([0, T]; V) \), where \(V \) is the space of solenoidal vector fields in \(H^1_0(C)^2 \).

In order to show that \(u \) is a weak solution we need to check that, for any solenoidal \(C^\infty \) vector field \(\Phi \) of compact support in \(C \) we have

\[
\frac{d}{dt} \int_C dx \, \Phi(x) \cdot u(x, t) = \int_C dx \, \Delta \Phi(x) \cdot u(x, t) - \int_C dx \, \Phi(x) \cdot [u(x, t) \cdot \nabla] u(x, t).
\]
So that we have the estimate

\[
\sup_{t \in [0, T]} |u_{k_1, k_2}(t)| \leq \|\omega\|_{\alpha, T} \frac{1}{|k|^{\alpha+1}}.
\]

Hence \(u \in L^2([0, T]; V) \), where \(V \) is the space of solenoidal vector fields in \(H^1_0(\mathcal{C})^2 \).

In order to show that \(u \) is a weak solution we need to check that, for any solenoidal \(C^\infty \) vector field \(\Phi \) of compact support in \(\mathcal{C} \) we have

\[
\frac{d}{dt} \int_\mathcal{C} dx \, \Phi(x) \cdot u(x, t) = \int_\mathcal{C} dx \, \Delta \Phi(x) \cdot u(x, t) -
\]

\[
- \int_\mathcal{C} dx \, \Phi(x) \cdot [u(x, t) \cdot \nabla] u(x, t).
\]

This can easily be proved by Green’s formula and straightforward computations. ■
So that we have the estimate

\[\sup_{t \in [0, T]} |u_{k_1,k_2}(t)| \leq \|\omega\|_{\alpha,T} \frac{1}{|k|^{\alpha+1}}. \]

Hence \(u \in L^2([0, T]; V) \), where \(V \) is the space of solenoidal vector fields in \(H^1_0(\mathcal{C})^2 \).

In order to show that \(u \) is a weak solution we need to check that, for any solenoidal \(\mathcal{C}^\infty \) vector field \(\Phi \) of compact support in \(\mathcal{C} \) we have

\[
\frac{d}{dt} \int_\mathcal{C} dx \, \Phi(x) \cdot u(x, t) = \int_\mathcal{C} dx \, \Delta \Phi(x) \cdot u(x, t) - \int_\mathcal{C} dx \, \Phi(x) \cdot [u(x, t) \cdot \nabla] u(x, t).
\]

This can easily be proved by Green’s formula and straightforward computations.
Extension to global solution.

For the extension to all times we need the classical enstrophy inequality.
Extension to global solution.

For the extension to all times we need the classical enstrophy inequality. Energy and enstrophy are written as

\[U(t) := \sum_{(0,0) \neq k \in \mathbb{Z}^2} \frac{\left| \hat{\omega}_{k_1, k_2}(t) \right|^2}{k^2}, \quad E(t) := \sum_{k \in \mathbb{Z}^2} \left| \hat{\omega}_{k_1, k_2}(t) \right|^2. \]
Extension to global solution.

For the extension to all times we need the classical enstrophy inequality. Energy and enstrophy are written as

\[U(t) := \sum_{(0,0) \neq k \in \mathbb{Z}^2} \frac{|\hat{\omega}_{k_1,k_2}(t)|^2}{k^2}, \quad E(t) := \sum_{k \in \mathbb{Z}^2} |\hat{\omega}_{k_1,k_2}(t)|^2. \]

If \(\|\omega\|_{\alpha,T} < \infty \), the energy inequality is

\[U(t) \leq U(0) e^{-t} \quad \forall \ t \in [0, T], \]
Extension to global solution.

For the extension to all times we need the classical enstrophy inequality. Energy and enstrophy are written as

\[U(t) := \sum_{(0,0) \neq k \in \mathbb{Z}^2} \frac{|\hat{\omega}_{k_1,k_2}(t)|^2}{k^2}, \quad E(t) := \sum_{k \in \mathbb{Z}^2} |\hat{\omega}_{k_1,k_2}(t)|^2. \]

If \(\|\omega\|_{\alpha,T} < \infty \), the energy inequality is

\[U(t) \leq U(0) e^{-t} \quad \forall \ t \in [0, T], \]

and the enstrophy inequality is, for some constants \(E_0, \sigma > 0 \),

\[E(t) \leq E_0 e^{-\sigma t} \quad \forall \ t \in [0, T]. \]
For the extension to all times we need the classical enstrophy inequality. Energy and enstrophy are written as

\[U(t) := \sum_{(0,0) \neq k \in \mathbb{Z}^2} \frac{|\hat{\omega}_{k_1,k_2}(t)|^2}{k^2}, \quad E(t) := \sum_{k \in \mathbb{Z}^2} |\hat{\omega}_{k_1,k_2}(t)|^2. \]

If \(\|\omega\|_{\alpha, T} < \infty \), the energy inequality is

\[U(t) \leq U(0) e^{-t} \quad \forall t \in [0, T], \]

and the enstrophy inequality is, for some constants \(E_0, \sigma > 0 \),

\[E(t) \leq E_0 e^{-\sigma t} \quad \forall t \in [0, T]. \]

In our setting the energy inequality is easily proved directly.
Extension to global solution.

For the extension to all times we need the classical enstrophy inequality. Energy and enstrophy are written as

\[
U(t) := \sum_{(0,0) \neq k \in \mathbb{Z}^2} \frac{\vert \hat{\omega}_{k_1,k_2}(t) \vert^2}{k^2}, \quad \mathcal{E}(t) := \sum_{k \in \mathbb{Z}^2} \vert \hat{\omega}_{k_1,k_2}(t) \vert^2.
\]

If \(\|\omega\|_{\alpha,T} < \infty \), the energy inequality is

\[
U(t) \leq U(0) e^{-t} \quad \forall \ t \in [0, T],
\]

and the enstrophy inequality is, for some constants \(E_0, \sigma > 0 \),

\[
\mathcal{E}(t) \leq E_0 e^{-\sigma t} \quad \forall \ t \in [0, T].
\]

In our setting the energy inequality is easily proved directly.
A direct proof for the enstrophy inequality is not easy to obtain.
A direct proof for the enstrophy inequality is not easy to obtain. However, as we have equivalence to the NS problem we can invoke the classical two-dimensional results.
A direct proof for the enstrophy inequality is not easy to obtain. However, as we have equivalence to the NS problem we can invoke the classical two-dimensional results. In fact if $u_0 \in V$, the weak solution is in $L^\infty([0, T]; V)$ for any $T > 0$, and, if there is no external force, the enstrophy inequality holds for some positive E_0, σ [Temam, 1979].
A direct proof for the enstrophy inequality is not easy to obtain. However, as we have equivalence to the NS problem we can invoke the classical two-dimensional results.

In fact if $u_0 \in V$, the weak solution is in $L^\infty([0, T]; V)$ for any $T > 0$, and, if there is no external force, the enstrophy inequality holds for some positive E_0, σ [Temam, 1979].

Proposition 7. Any local solution $\{\omega_{k_1,k_2}(t); k_1 \in \mathbb{Z}, k_2 \geq 0\}$, $t \in [0, T]$, to equations (8) satisfying the boundary conditions and such that $\|\omega\|_{\alpha,T} < \infty$, extends uniquely to a global solution.
A direct proof for the enstrophy inequality is not easy to obtain. However, as we have equivalence to the NS problem we can invoke the classical two-dimensional results.

In fact if \(u_0 \in V \), the weak solution is in \(L^\infty([0, T]; V) \) for any \(T > 0 \), and, if there is no external force, the enstrophy inequality holds for some positive \(E_0, \sigma \) [Temam, 1979].

Proposition 7. Any local solution \(\{\omega_{k_1,k_2}(t); k_1 \in \mathbb{Z}, k_2 \geq 0\} \), \(t \in [0, T] \), to equations (8) satisfying the boundary conditions and such that \(\|\omega\|_{\alpha,T} < \infty \), extends uniquely to a global solution. Moreover, if

\[
|\omega|_{\alpha,t} := \sup_{k_1 \in \mathbb{Z}} \sup_{k_2 \geq 0} |\omega_{k_1,k_2}(t)| \ |k|^{\alpha}
\]
A direct proof for the enstrophy inequality is not easy to obtain. However, as we have equivalence to the NS problem we can invoke the classical two-dimensional results.

In fact if \(u_0 \in V \), the weak solution is in \(L^\infty([0, T]; V) \) for any \(T > 0 \), and, if there is no external force, the enstrophy inequality holds for some positive \(E_0, \sigma \) [Temam, 1979].

Proposition 7. Any local solution \(\{\omega_{k_1,k_2}(t); \ k_1 \in \mathbb{Z}, \ k_2 \geq 0\} \), \(t \in [0, T] \), to equations (8) satisfying the boundary conditions and such that \(\|\omega\|_{\alpha,T} < \infty \), extends uniquely to a global solution. Moreover, if

\[
|\omega|_{\alpha,t} := \sup_{k_1 \in \mathbb{Z}} \sup_{k_2 \geq 0} |\omega_{k_1,k_2}(t)| \ |k|^\alpha
\]

then \(|\omega|_{\alpha,t} \to 0 \) exponentially fast as \(t \to +\infty \).
A direct proof for the enstrophy inequality is not easy to obtain. However, as we have equivalence to the NS problem we can invoke the classical two-dimensional results.

In fact if $u_0 \in V$, the weak solution is in $L^\infty([0, T]; V)$ for any $T > 0$, and, if there is no external force, the enstrophy inequality holds for some positive E_0, σ [Temam, 1979].

Proposition 7. Any local solution \(\{\omega_{k_1,k_2}(t); k_1 \in \mathbb{Z}, k_2 \geq 0\} \), \(t \in [0, T] \), to equations (8) satisfying the boundary conditions and such that \(\|\omega\|_{\alpha,T} < \infty \), extends uniquely to a global solution. Moreover, if

\[
|\omega|_{\alpha,t} := \sup_{k_1 \in \mathbb{Z}} \sup_{k_2 \geq 0} |\omega_{k_1,k_2}(t)| |k|^{\alpha}
\]

then \(|\omega|_{\alpha,t} \to 0 \) exponentially fast as \(t \to +\infty \).
Proof. Since $|\omega|_{\alpha, T} < \infty$, we can take $\omega_{k_1, k_2}(T)$ as initial data, to get existence up to a time $T_1 > T$. Iterating, we get a growing sequence of times $T_{j+1} > T_j, j \geq 1$.
Proof. Since \(|\omega|_{\alpha,T} < \infty\), we can take \(\omega_{k_1,k_2}(T)\) as initial data, to get existence up to a time \(T_1 > T\). Iterating, we get a growing sequence of times \(T_{j+1} > T_j, j \geq 1\). Let \(T^* = \lim_{j \to \infty} T_j\).
Proof. Since $|\omega|_{\alpha,T} < \infty$, we can take $\omega_{k_1,k_2}(T)$ as initial data, to get existence up to a time $T_1 > T$. Iterating, we get a growing sequence of times $T_{j+1} > T_j$, $j \geq 1$. Let $T^* = \lim_{j \to \infty} T_j$. If $T^* < +\infty$ then clearly

$$\limsup_{t \uparrow T^*} \|\omega\|_{\alpha,t} = +\infty.$$
Proof. Since $|\omega|_{\alpha, T} < \infty$, we can take $\omega_{k_1, k_2}(T)$ as initial data, to get existence up to a time $T_1 > T$. Iterating, we get a growing sequence of times $T_{j+1} > T_j$, $j \geq 1$.

Let $T^* = \lim_{j \to \infty} T_j$. If $T^* < +\infty$ then clearly

$$\limsup_{t \uparrow T^*} \|\omega\|_{\alpha, t} = +\infty.$$

We shall prove that this is impossible.
Proof. Since $|\omega|_{\alpha,T} < \infty$, we can take $\omega_{k_1,k_2}(T)$ as initial data, to get existence up to a time $T_1 > T$. Iterating, we get a growing sequence of times $T_{j+1} > T_j$, $j \geq 1$.

Let $T^* = \lim_{j \to \infty} T_j$. If $T^* < +\infty$ then clearly

$$\limsup_{t \uparrow T^*} \|\omega\|_{\alpha,t} = +\infty.$$

We shall prove that this is impossible. By Eq. (8) we have

$$|\omega_{k_1,k_2}(t)| \leq \frac{e^{-k^2 t} |\omega|_{\alpha,0}}{|k|_{\alpha}} + \int_0^t ds e^{-k^2(t-s)} \left[|f_{\pm,k_1}(s)| + |N_{k_1,k_2}[\omega(s)]| \right].$$
Proof. Since $|\omega|_{\alpha,T} < \infty$, we can take $\omega_{k_1,k_2}(T)$ as initial data, to get existence up to a time $T_1 > T$. Iterating, we get a growing sequence of times $T_{j+1} > T_j$, $j \geq 1$.

Let $T^* = \lim_{j \to \infty} T_j$. If $T^* < +\infty$ then clearly

$$\limsup_{t \uparrow T^*} \|\omega\|_{\alpha,t} = +\infty.$$

We shall prove that this is impossible. By Eq. (8) we have

$$|\omega_{k_1,k_2}(t)| \leq \frac{e^{-k^2 t} |\omega|_{\alpha,0}}{|k|_{\alpha}} + \int_0^t ds e^{-k^2(t-s)} \left[|f_{\pm,k_1}(s)| + |N_{k_1,k_2}[\omega(s)]| \right].$$

Using the enstrophy inequality we get the following estimates of the terms on the right, for some constants $C, C' > 0$,

$$N_{k_1,k_2}[\omega(t)] \leq C e^{-\sigma t/2} \|\omega\|_{\alpha,t},$$
Proof. Since $|\omega|_{\alpha,T} < \infty$, we can take $\omega_{k_1,k_2}(T)$ as initial data, to get existence up to a time $T_1 > T$. Iterating, we get a growing sequence of times $T_{j+1} > T_j$, $j \geq 1$.

Let $T^* = \lim_{j \to \infty} T_j$. If $T^* < +\infty$ then clearly

$$\limsup_{t \uparrow T^*} \|\omega\|_{\alpha,t} = +\infty.$$

We shall prove that this is impossible. By Eq. (8) we have

$$|\omega_{k_1,k_2}(t)| \leq \frac{e^{-k^2 t} |\omega|_{\alpha,0}}{|k|_{\alpha}} + \int_0^t ds \, e^{-k^2 (t-s)} \left[|f_{\pm,k_1}(s)| + |N_{k_1,k_2}[\omega(s)]| \right].$$

Using the enstrophy inequality we get the following estimates of the terms on the right, for some constants $C, C' > 0$,

$$N_{k_1,k_2}[\omega(t)] \leq C \, e^{-\sigma t/2} \|\omega\|_{\alpha,t},$$
\[|f_{\pm, k_1}(t)| \leq C' \left[\frac{|\omega|_{\alpha, 0}}{|k_1|^{\alpha-2}} e^{-k_1^2 t/2} + \|\omega\|_{\alpha, t} e^{-\sigma t/2} \right]. \]
\[|f_{\pm,k_1}(t)| \leq C' \left[\frac{|\omega|_{\alpha,0}}{|k_1|^{\alpha-2}} e^{-k_1^2 t/2} + ||\omega||_{\alpha,t} e^{-\sigma t/2} \right]. \]

A straightforward computation leads to the integral inequality for \(t < T_* \)
\[|f_{\pm, k_1}(t)| \leq C' \left[\left| \frac{\omega|_{\alpha,0}}{k_1^{|\alpha-2|}} e^{-k_1^2 t/2} + \|\omega\|_{\alpha, t} e^{-\sigma t/2} \right] \right]. \]

A straightforward computation leads to the integral inequality for \(t < T_* \)

\[\|\omega\|_{\alpha, t} \leq \tilde{C} |\omega|_{\alpha,0} + \kappa \int_0^t ds \|\omega\|_{\alpha, s}, \]

for some constants \(\tilde{C}, \kappa > 0, \)
\[|f_{\pm,k_1}(t)| \leq C' \left[\frac{\|\omega\|_{\alpha,0}}{|k_1|^{\alpha-2}} e^{-k_1^2 t/2} + \|\omega\|_{\alpha,t} e^{-\sigma t/2} \right]. \]

A straightforward computation leads to the integral inequality for \(t < T_* \)
\[\|\omega\|_{\alpha,t} \leq \bar{C} \|\omega\|_{\alpha,0} + \kappa \int_0^t ds \|\omega\|_{\alpha,s}, \]
for some constants \(\bar{C}, \kappa > 0 \), which implies, by the Gronwall Lemma,
\[\|\omega\|_{\alpha,t} \leq \bar{C} \|\omega\|_{\alpha,0} \exp(\kappa t). \]
\[|f_{\pm,k_1}(t)| \leq C' \left[\frac{\omega_{\alpha,0}}{|k_1|^{\alpha-2}} e^{-\frac{k_1^2 t}{2}} + \|\omega\|_{\alpha,t} e^{-\sigma t/2} \right]. \]

A straightforward computation leads to the integral inequality for \(t < T_* \)
\[\|\omega\|_{\alpha,t} \leq \bar{C} \omega_{\alpha,0} + \kappa \int_0^t ds \|\omega\|_{\alpha,s}, \]
for some constants \(\bar{C}, \kappa > 0 \), which implies, by the Gronwall Lemma,
\[\|\omega\|_{\alpha,t} \leq \bar{C} \omega_{\alpha,0} \exp(\kappa t). \]
It follows that \(\|\omega\|_{\alpha,t} \) is bounded as \(t \uparrow T^* \) if \(T^* < +\infty \), hence \(T^* = +\infty \).
\[|f_{\pm, k_1}(t)| \leq C' \left[\frac{|\omega|_{\alpha,0}}{|k_1|^{\alpha-2}} e^{-k_1^2 t/2} + \|\omega\|_{\alpha,t} e^{-\sigma t/2} \right]. \]

A straightforward computation leads to the integral inequality for \(t < T_* \)

\[\|\omega\|_{\alpha,t} \leq \bar{C} |\omega|_{\alpha,0} + \kappa \int_0^t ds \|\omega\|_{\alpha,s}, \]

for some constants \(\bar{C}, \kappa > 0 \), which implies, by the Gronwall Lemma,

\[\|\omega\|_{\alpha,t} \leq \bar{C} |\omega|_{\alpha,0} \exp(\kappa t). \]

It follows that \(\|\omega\|_{\alpha,t} \) is bounded as \(t \uparrow T^* \) if \(T^* < +\infty \), hence \(T^* = +\infty \).

The proof that \(|\omega|_{\alpha,t} \) converges exponentially to zero is also straightforward. \[\blacksquare \]
\[|f_{\pm, k_1}(t)| \leq C' \left[\frac{|\omega|_{\alpha,0}}{|k_1|_{\alpha-2}} e^{-k_1^2 t/2} + \|\omega\|_{\alpha,t} e^{-\sigma t/2} \right]. \]

A straightforward computation leads to the integral inequality for \(t < T_* \)
\[
\|\omega\|_{\alpha,t} \leq \bar{C} |\omega|_{\alpha,0} + \kappa \int_0^t ds \|\omega\|_{\alpha,s},
\]
for some constants \(\bar{C}, \kappa > 0 \), which implies, by the Gronwall Lemma,
\[
\|\omega\|_{\alpha,t} \leq \bar{C} |\omega|_{\alpha,0} \exp(\kappa t).
\]
It follows that \(\|\omega\|_{\alpha,t} \) is bounded as \(t \uparrow T^* \) if \(T^* < +\infty \), hence \(T^* = +\infty \).

The proof that \(|\omega|_{\alpha,t} \) converges exponentially to zero is also straightforward. \(\blacksquare \)
We have almost proved our main result.
We have almost proved our main result.

Theorem. Let $\omega_{k_1,k_2}(0)$ satisfy the boundary conditions, and, for any $k \neq (0,0)$, the inequalities

\[|\omega_{k_1,k_2}(t)| \leq D_0 |k|^{\alpha}(1 + |k_1|^{\beta}), \]

with $1 < \alpha < 2$, $\beta \geq 0$, and $D_0 > 0$.

Then there is a unique solution $\{\omega_{k_1,k_2}(t)\}$ of equations (8) which satisfies for all $t \geq 0$ the boundary conditions, with the following properties.

i) There are constants $D_1, \nu > 0$ (depending on D_0, α, β), such that for all $k \neq 0$ the following inequalities hold

\[|\omega_{k_1,k_2}(t)| \leq D_1 e^{-\nu(1 + |k_1|^{\beta})t}|k|^{\alpha}(1 + |k_1|^{\beta}). \]

ii) Moreover, for each $t_0 > 0$ there is a constant $\tilde{D}_1 = \tilde{D}_1(D_0, t_0, \alpha, \beta)$ such that

\[|\omega_{k_1,k_2}(t)| \leq \tilde{D}_1 e^{-\nu(1 + |k_1|^{\beta})t/2} \quad \forall t \geq t_0. \]
We have almost proved our main result.

Theorem. Let $\omega_{k_1,k_2}(0)$ satisfy the boundary conditions, and, for any $k \neq (0,0)$, the inequalities

$$|\omega_{k_1,k_2}(0)| \leq \frac{D_0}{|k|^{\alpha}(1 + |k_1|^\beta)},$$

with $1 < \alpha < 2$, $\beta \geq 0$, and $D_0 > 0$. Then there is a unique solution $\{\omega_{k_1,k_2}(t)\}$ of equations (8) which satisfies for all $t \geq 0$ the boundary conditions, with the following properties.

i) There are constants $D_1, \nu > 0$ (depending on D_0, α, β), such that for all $k \neq 0$ the following inequalities hold

$$|\omega_{k_1,k_2}(t)| \leq D_1 e^{-\nu(1 + |k_1|)}.$$
We have almost proved our main result.

Theorem. Let $\omega_{k_1,k_2}(0)$ satisfy the boundary conditions, and, for any $k \neq (0,0)$, the inequalities

$$|\omega_{k_1,k_2}(0)| \leq \frac{D_0}{|k|^\alpha (1 + |k_1|^\beta)},$$

with $1 < \alpha < 2$, $\beta \geq 0$, and $D_0 > 0$.
We have almost proved our main result.

Theorem. Let $\omega_{k_1, k_2}(0)$ satisfy the boundary conditions, and, for any $k \neq (0, 0)$, the inequalities

$$|\omega_{k_1, k_2}(0)| \leq \frac{D_0}{|k|^\alpha (1 + |k_1|^\beta)},$$

with $1 < \alpha < 2$, $\beta \geq 0$, and $D_0 > 0$. Then there is a unique solution $\{\omega_{k_1, k_2}(t)\}$ of equations (8) which satisfies for all $t \geq 0$ the boundary conditions, with the following properties.

i) There are constants $D_1, \nu > 0$ (depending on D_0, α, β), such that for all $k \neq 0$ the following inequalities hold
We have almost proved our main result.

Theorem. Let $\omega_{k_1,k_2}(0)$ satisfy the boundary conditions, and, for any $k \neq (0,0)$, the inequalities

$$|\omega_{k_1,k_2}(0)| \leq \frac{D_0}{|k|^{\alpha}(1 + |k_1|^\beta)},$$

with $1 < \alpha < 2$, $\beta \geq 0$, and $D_0 > 0$. Then there is a unique solution $\{\omega_{k_1,k_2}(t)\}$ of equations (8) which satisfies for all $t \geq 0$ the boundary conditions, with the following properties.

i) There are constants $D_1, \nu > 0$ (depending on D_0, α, β), such that for all $k \neq 0$ the following inequalities hold

$$|\omega_{k_1,k_2}(t)| \leq \frac{D_1 e^{-\nu(1+|k_1|)t}}{|k|^{\alpha}(1 + |k_1|^\beta)}.$$
We have almost proved our main result.

Theorem. Let $\omega_{k_1,k_2}(0)$ satisfy the boundary conditions, and, for any $k \neq (0,0)$, the inequalities

$$|\omega_{k_1,k_2}(0)| \leq \frac{D_0}{|k|^\alpha(1 + |k_1|^\beta)},$$

with $1 < \alpha < 2$, $\beta \geq 0$, and $D_0 > 0$. Then there is a unique solution $\{\omega_{k_1,k_2}(t)\}$ of equations (8) which satisfies for all $t \geq 0$ the boundary conditions, with the following properties.

i) There are constants $D_1, \nu > 0$ (depending on D_0, α, β), such that for all $k \neq 0$ the following inequalities hold

$$|\omega_{k_1,k_2}(t)| \leq \frac{D_1 e^{-\nu(1+|k_1|)t}}{|k|^\alpha(1 + |k_1|^\beta)}.$$

ii) Moreover, for each $t_0 > 0$ there is a constant $\tilde{D}_1 = \tilde{D}_1(D_0, t_0, \alpha, \beta)$ such that

$$|\omega_{k_1,k_2}(t)| \leq \frac{\tilde{D}_1 e^{-\nu(1+|k_1|)t/2}}{k^2} \quad \forall t \geq t_0.$$
We have almost proved our main result.

Theorem. Let \(\omega_{k_1,k_2}(0) \) satisfy the boundary conditions, and, for any \(k \neq (0,0) \), the inequalities

\[
|\omega_{k_1,k_2}(0)| \leq \frac{D_0}{|k|^\alpha(1 + |k_1|^\beta)},
\]

with \(1 < \alpha < 2, \beta \geq 0, \) and \(D_0 > 0 \). Then there is a unique solution \(\{\omega_{k_1,k_2}(t)\} \) of equations (8) which satisfies for all \(t \geq 0 \) the boundary conditions, with the following properties.

i) There are constants \(D_1, \nu > 0 \) (depending on \(D_0, \alpha, \beta \)), such that for all \(k \neq 0 \) the following inequalities hold

\[
|\omega_{k_1,k_2}(t)| \leq \frac{D_1 e^{-\nu(1+|k_1|)t}}{|k|^\alpha(1 + |k_1|^\beta)}.
\]

ii) Moreover, for each \(t_0 > 0 \) there is a constant \(\tilde{D}_1 = \tilde{D}_1(D_0, t_0, \alpha, \beta) \) such that

\[
|\omega_{k_1,k_2}(t)| \leq \frac{\tilde{D}_1 e^{-\nu(1+|k_1|)t/2}}{k^2} \quad \forall \ t \geq t_0.
\]
iii) The velocity field $u(x, t) := \nabla \perp \Delta_N^{-1} \omega(x, t)$ is a weak solution to the NS system with Dirichlet boundary conditions.
iii) The velocity field \(u(x, t) := \nabla^\perp \Delta_n^{-1} \omega(x, t) \) is a weak solution to the NS system with Dirichlet boundary conditions.

Proof. The previous results amount, up to some details, to a proof of assertion i) for \(\beta = 0 \) and \(\nu = 0 \).
iii) The velocity field \(u(x, t) := \nabla^\perp \Delta_N^{-1} \omega(x, t) \) is a weak solution to the NS system with Dirichlet boundary conditions.

Proof. The previous results amount, up to some details, to a proof of assertion i) for \(\beta = 0 \) and \(\nu = 0 \). As

\[
|\omega|_{\alpha, t} := \sup_{k_1 \in \mathbb{Z}} \sup_{k_2 \geq 0} |\omega_{k_1, k_2}(t)| |k|^\alpha
\]

tends to 0 exponentially fast, we prove the result for \(\beta > 0 \) and find some \(\nu > 0 \) by using the global result for small initial data.
iii) The velocity field $u(x, t) := \nabla \perp \Delta^{-1}_N \omega(x, t)$ is a weak solution to the NS system with Dirichlet boundary conditions.

Proof. The previous results amount, up to some details, to a proof of assertion i) for $\beta = 0$ and $\nu = 0$. As

$$|\omega|_{\alpha, t} := \sup_{k_1 \in \mathbb{Z}} \sup_{k_2 \geq 0} |\omega_{k_1, k_2}(t)| |k|^{\alpha}$$

tends to 0 exponentially fast, we prove the result for $\beta > 0$ and find some $\nu > 0$ by using the global result for small initial data.

Assertion ii) is proved by some kind of simple bootstrap argument.
iii) The velocity field \(u(x, t) := \nabla^\perp \Delta_N^{-1} \omega(x, t) \) is a weak solution to the NS system with Dirichlet boundary conditions.

Proof. The previous results amount, up to some details, to a proof of assertion i) for \(\beta = 0 \) and \(\nu = 0 \). As

\[
|\omega|_{\alpha, t} := \sup_{k_1 \in \mathbb{Z}} \sup_{k_2 \geq 0} |\omega_{k_1, k_2}(t)| |k|^\alpha
\]

tends to 0 exponentially fast, we prove the result for \(\beta > 0 \) and find some \(\nu > 0 \) by using the global result for small initial data. Assertion ii) is proved by some kind of simple bootstrap argument.

Assertion iii) is proved exactly as in Lemma 6. \(\blacksquare\)
iii) The velocity field \(u(x, t) := \nabla^\perp \Delta_N^{-1} \omega(x, t) \) is a weak solution to the NS system with Dirichlet boundary conditions.

Proof. The previous results amount, up to some details, to a proof of assertion i) for \(\beta = 0 \) and \(\nu = 0 \). As

\[
|\omega|_{\alpha, t} := \sup_{k_1 \in \mathbb{Z}} \sup_{k_2 \geq 0} |\omega_{k_1, k_2}(t)| |k|^{\alpha}
\]

tends to 0 exponentially fast, we prove the result for \(\beta > 0 \) and find some \(\nu > 0 \) by using the global result for small initial data. Assertion ii) is proved by some kind of simple bootstrap argument.

Assertion iii) is proved exactly as in Lemma 6. ■
As the flat cylinder has a smooth boundary, we know, by the general results on the 2-d NS equations that for \(t > 0 \) the solutions with \(u_0 \in V \) are infinitely differentiable in time and space.
As the flat cylinder has a smooth boundary, we know, by the general results on the 2-d NS equations that for $t > 0$ the solutions with $u_0 \in V$ are infinitely differentiable in time and space.

Such regularity properties are difficult to check for our Fourier expansions in the Neumann basis, as the Neumann eigenfunctions do not satisfy the correct boundary conditions.
As the flat cylinder has a smooth boundary, we know, by the general results on the 2-d NS equations that for $t > 0$ the solutions with $u_0 \in V$ are infinitely differentiable in time and space.

Such regularity properties are difficult to check for our Fourier expansions in the Neumann basis, as the Neumann eigenfunctions do not satisfy the correct boundary conditions. (The "correct" eigenfunctions, i.e., the eigenfunctions of the Stokes problem, are not explicitly known, even for the flat cylinder.)
As the flat cylinder has a smooth boundary, we know, by the general results on the 2-d NS equations that for \(t > 0 \) the solutions with \(u_0 \in V \) are infinitely differentiable in time and space.

Such regularity properties are difficult to check for our Fourier expansions in the Neumann basis, as the Neumann eigenfunctions do not satisfy the correct boundary conditions. (The “correct” eigenfunctions, i.e., the eigenfunctions of the Stokes problem, are not explicitly known, even for the flat cylinder.)

Nevertheless, making use of the properties of the heat kernel, we can prove the following result.
As the flat cylinder has a smooth boundary, we know, by the general results on the 2-d NS equations that for \(t > 0 \) the solutions with \(u_0 \in V \) are infinitely differentiable in time and space.

Such regularity properties are difficult to check for our Fourier expansions in the Neumann basis, as the Neumann eigenfunctions do not satisfy the correct boundary conditions. (The ”correct” eigenfunctions, i.e., the eigenfunctions of the Stokes problem, are not explicitly known, even for the flat cylinder.)

Nevertheless, making use of the properties of the heat kernel, we can prove the following result.
Corollary 8. For $t > 0$ the expression for the solution of the equations (8)

$$\omega(x, t) = \sum_k \omega_{k_1, k_2}(0) e^{-k^2 t} e^{i k \cdot x} + \sum_k \int_0^t dse^{-k^2(t-s)} N_{k_1, k_2}[\omega(s)] e^{i k \cdot x} +$$

$$+ F_+(x, t) + F_-(x, t)$$
Corollary 8. For $t > 0$ the expression for the solution of the equations (8)

$$\omega(x, t) = \sum_k \omega_{k_1, k_2}(0) e^{-k^2 t} e^{i k \cdot x} + \sum_k \int_0^t ds e^{-k^2 (t-s)} N_{k_1, k_2} [\omega(s)] e^{i k \cdot x} +$$

$$+ F_+(x, t) + F_-(x, t)$$

where

$$F_\pm(x, t) = \sum_{k_1 \neq 0} \sum_{k_2, \pm} e^{i k_1 x_1} \cos(k_2 x_2) \int_0^t ds e^{-k^2 (t-s)} f_{\pm, k_1}(s)$$

are differentiable term by term in x_2 and infinitely differentiable in x_1 with continuous derivatives up to the boundary.
Corollary 8. For $t > 0$ the expression for the solution of the equations (8)

$$
\omega(x, t) = \sum_k \omega_{k_1,k_2}(0)e^{-k^2 t}e^{ik \cdot x} + \sum_k \int_0^t ds e^{-k^2(t-s)}N_{k_1,k_2}[\omega(s)]e^{ik \cdot x} + \\
+ F_+(x, t) + F_-(x, t)
$$

where

$$
F_\pm(x, t) = \sum_{k_1 \neq 0} \sum_{k_2, \pm} e^{ik_1 x_1} \cos(k_2 x_2) \int_0^t ds e^{-k^2(t-s)}f_{\pm,k_1}(s)
$$

are differentiable term by term in x_2 and infinitely differentiable in x_1 with continuous derivatives up to the boundary.