CLT for first-passage time along thin cylinders

Partha Sarathi Dey
UC Berkeley

joint work with Sourav Chatterjee, UCB

AZ School of Analysis
March 18, 2010
Consider the d-dimensional square lattice \mathbb{Z}^d where each edge e has i.i.d. nonnegative passage time ω_e from a fixed distribution F.
For any path \mathcal{P}, define the **passage time** for \mathcal{P} by

$$\omega(\mathcal{P}) := \sum_{e \in \mathcal{P}} \omega_e.$$
For two vertices $x, y \in \mathbb{Z}^d$, the first-passage time $a(x, y)$ is defined as the minimum passage time over all paths from x to y.
Known results: mean behavior

- This model was introduced by Hammersley and Welsh ('65) to model flow of liquid through random media.

- When $\mathbb{E}[^\omega] < \infty$, by subadditivity

$$\nu(x) = \lim_{n \to \infty} \frac{1}{n} \mathbb{E}[a(0, nx)]$$

exists and is finite for all $x \in \mathbb{Z}^d$ (HW('65)).
Known results: mean behavior

- This model was introduced by Hammersley and Welsh ('65) to model flow of liquid through random media.

- When $\mathbb{E}[\omega] < \infty$, by subadditivity

\[
\nu(x) = \lim_{n \to \infty} \frac{1}{n} \mathbb{E}[a(0, nx)]
\]

exists and is finite for all $x \in \mathbb{Z}^d$ (HW('65)).

- Kesten ('86) proved that,

\[
\nu(x) > 0 \text{ iff } F(0) = \mathbb{P}(\omega = 0) < p_c(d)
\]

where $p_c(d)$ is the critical probability for bond percolation in \mathbb{Z}^d.
Known results: fluctuation bounds

- Bounds on $\text{Var}(a(0, nx))$ when $F(0) < p_c(d)$:
 - lower bound of $\log n$ for $d = 2$
 due to Pemantle and Peres('94), Newman and Piza('95) and Zhang('08).
 - upper bound of $cn / \log n$ for general d
 due to Benjamini, Kalai and Schramm('03).
 - conjectured bound for $d = 2$, $\text{Var}(a(0, nx)) \approx n^{2/3}$.

- It is also conjectured that the distance between the minimizing path and the straight line path joining 0 to nx is $\approx n^{2/3}$ for $d = 2$.
Known results: fluctuation bounds

- Bounds on $\text{Var}(a(0, nx))$ when $F(0) < p_c(d)$:
 - **Lower** bound of $c \log n$ for $d = 2$
 due to Pemantle and Peres('94), Newman and Piza('95) and Zhang('08).
 - **Upper** bound of $cn / \log n$ for general d
 due to Benjamini, Kalai and Schramm('03).
 - **Conjectured** bound for $d = 2$, $\text{Var}(a(0, nx)) \approx n^{2/3}$.

- It is also conjectured that the **distance** between the minimizing path and the straight line path joining 0 to nx is $\approx n^{2/3}$ for $d = 2$.

- **Nothing** is known about the limiting distribution of $a(0, nx)$ when $F(0) < p_c(d)$.
Main result: Gaussian Limit

Consider the first-passage time $a_n(h)$ from 0 to $(n, 0, \ldots, 0)$ in the graph $\mathbb{Z} \times [-h, h]^{d-1}$.
Main result: Gaussian Limit

Consider the first-passage time $a_n(h)$ from 0 to $(n, 0, \ldots, 0)$ in the graph $\mathbb{Z} \times [-h, h]^{d-1}$.

Theorem (Chatterjee and D.’09)

Suppose $F(0) < p_c(d)$ and $E[\omega^k] < \infty$ for all k. Let $\{h_n\}$ be a sequence of integers satisfying

$$h_n \ll n^{\frac{1}{d+1}}.$$

Then

$$\frac{a_n(h_n) - E[a_n(h_n)]}{\sqrt{\text{Var}(a_n(h_n))}} \Rightarrow N(0, 1) \text{ as } n \to \infty.$$
Results: Moment bounds

We have,

$$\lim_{n \to \infty} \frac{1}{n} \mathbb{E}[a_n(h_n)] = \nu(1, 0, \ldots, 0)$$

when $h_n \to \infty$.
Results: Moment bounds

- We have,
 \[\lim_{n \to \infty} \frac{1}{n} \mathbb{E}[a_n(h_n)] = \nu(1, 0, \ldots, 0) \]
 when \(h_n \to \infty \).

- For all \(h_n \leq n \),
 \[\frac{c n}{h_n^{d-1}} \leq \text{Var}(a_n(h_n)) \leq \frac{C n}{1 + \log h_n} \]
 where \(c, C \) depend only on \(F \) and \(d \).
Results: Moment bounds

- We have,
 \[\lim_{n \to \infty} \frac{1}{n} \mathbb{E}[a_n(h_n)] = \nu(1, 0, \ldots, 0) \]
 when \(h_n \to \infty \).

- For all \(h_n \leq n \),
 \[\frac{c n}{h_n^{d-1}} \leq \text{Var}(a_n(h_n)) \leq \frac{C n}{1 + \log h_n} \]
 where \(c, C \) depend only on \(F \) and \(d \).

- For all \(h_n \leq n \),
 \[\mathbb{E} |a_n(h_n) - \mathbb{E}[a_n(h_n)]|^k \leq c n^{k/2} \]
 where \(c \) depends only on \(F \) and \(d \).
Reason for the CLT: \(d = 2 \) case

- Write \(n = ml \) with \(l \geq h_n \).
- Break \([0, n] \times [-h_n, h_n]\) into \(m \) blocks

\[B_i = [(i-1)l, il] \times [-h_n, h_n] \text{ for } 1 \leq i \leq m. \]
Reason for the CLT: $d = 2$ case

- Write $n = ml$ with $l \geq h_n$.
- Break $[0, n] \times [-h_n, h_n]$ into m blocks

 $$B_i = [(i-1)l, il] \times [-h_n, h_n] \text{ for } 1 \leq i \leq m.$$

- Let X_i be the minimum passage time over all paths joining left boundary of B_i to its right boundary inside the block B_i.
- X_i’s are i.i.d. for $1 \leq i \leq m$.
We have

\[a_n(h_n) \geq X_1 + X_2 + \cdots + X_m. \]
Approximation as i.i.d. sum

We have

\[a_n(h_n) \geq X_1 + X_2 + \cdots + X_m. \]

We also have

\[a_n(h_n) \leq X_1 + X_2 + \cdots + X_m + Z \]

where \(Z \) is sum of all edge-weights in the left/right boundaries of \(B_i \).
Approximation as i.i.d. sum

We have

\[a_n(h_n) \geq X_1 + X_2 + \cdots + X_m. \]

We also have

\[a_n(h_n) \leq X_1 + X_2 + \cdots + X_m + Z \]

where \(Z \) is sum of all edge-weights in the left/right boundaries of \(B_i \).

\[
\mathbb{E}\left[\frac{a_n(h_n) - \mathbb{E}[a_n(h_n)]}{\sqrt{\text{Var}(a_n(h_n))}} \right] - \sum_{i=1}^{m} \frac{X_i - \mathbb{E}[X_i]}{\sqrt{\text{Var}(a_n(h_n))}} \leq \frac{4\mathbb{E}[Z^2]}{\text{Var}(a_n(h_n))}.
\]
Thus $a_n(h_n)$ is approximately a sum of i.i.d. random variables when

$$\mathbb{E}[Z^2] \ll \text{Var}(a_n(h_n))$$
Thus $a_n(h_n)$ is approximately a sum of i.i.d. random variables when

$$\mathbb{E}[Z^2] \ll \text{Var}(a_n(h_n))$$

or

$$\mathbb{E}[Z^2] \approx (mh_n)^2 \ll n/h_n \leq \text{Var}(a_n(h_n)).$$
Thus $a_n(h_n)$ is approximately a sum of i.i.d. random variables when

$$\mathbb{E}[Z^2] \ll \text{Var}(a_n(h_n))$$

or

$$\mathbb{E}[Z^2] \approx (mh_n)^2 \ll \frac{n}{h_n} \leq \text{Var}(a_n(h_n)).$$

We need the condition

$$h_n^3 \ll \frac{n}{m^2} \text{ or } h_n \ll \frac{n^{1/3}}{m^{2/3}}.$$
Thus $a_n(h_n)$ is approximately a sum of i.i.d. random variables when

$$\mathbb{E}[Z^2] \ll \text{Var}(a_n(h_n))$$

or

$$\mathbb{E}[Z^2] \approx (mh_n)^2 \ll n/h_n \leq \text{Var}(a_n(h_n)).$$

We need the condition

$$h_n^3 \ll n/m^2 \text{ or } h_n \ll n^{1/3}/m^{2/3}.$$

Actual proof involves a renormalization argument and the moment bounds.
Open problems

- What is the threshold for CLT? Note that $(d + 1)^{-1} \to 0$ as $d \to \infty$. Is it possible to derive CLT upto n^α, where α is uniformly away from zero for all d.

- For oriented percolation we have a limiting Tracy Widom distribution. How to explain the transition?

- Results on the order of the variance will give nontrivial bound for the unrestricted case.

- Finally, the structure of the minimizing path is mostly unknown. The path is known to be chaotic.
Thank you!